

IMT INSTITUTE FOR ADVANCED STUDIES LUCCA

A coupled hygro-thermo-mechanical formulation for the analysis of diffusive phenomena in photovoltaic modules

> Pietro Lenarda and Marco Paggi marco.paggi@imtlucca.it

February 3, 2015 Institute of Structural Analysis, Leibniz Universität Hannover, Germany

Contents

Introduction

- 2 Variational framework for the thermo-mechanical behaviour of EVA
- **③** FE approximation of the thermo-mechanical behaviour of EVA
- 4 Thermo-mechanical operators for a 2D interface element
- 5 Variational framework for moisture diffusion inside EVA
- 6 FE approximation of moisture diffusion inside EVA
- Numerical examples
- 8 Conclusion and outlook

Introduction

EL degradation during the damp heat test ($T=85^\circ,\,RH=85\%)$ after 1000 h, 2000 h, and 3000 h

[W. Hermann, N. Bogdanski. Outdoor weathering of PV modules–Effects of various climates and comparison with accelerated laboratory laboratory testing, 37th PVSC (IEEE, Seattle, USA, 2011) 2305-2311]

				100	
	1.00				
				No.	
					100
	i				
			Ē		N.
i	1				
			T		
		i	1		

61011	199		11213	100	100
Ser. 1	1.334	1.00	1.51	1.1	
122.0	184	1203	1000	11000	1000
121	121	101	184	189	191
	1000	51524	1000	11.0	
121	191		191	1001	
1.1.1	121				
1200	128		1 224	1201	1000
101	158	131	161	민준아	121
100	1000	1000	10.11	10.1	and the
	1000				
		121			191
11121	1.1	E 122.	1000	1 2 4	121
1.41	N E11	1211	6 C H		164
2 4 3 2	20.0	Sec. 1		15.6	11.11
	411	10011	1.51	191	100
	100			121	100
	1000	104	100	101	1.11
		1.26	NEE	100	1.04
are a	11400	1.4.8	1.00	1.8	1.11
100.0	0.0010	11111	123	129	120
10.04			104		161
1.00	100	100	1000		100
	1.00		100		1.11
	1.04	1.0	1.1	1.00	14.15
No. of Concession, Name	8 41 3	1921	1 201	1.011	1.4.4
10.00	10.1		1154	100	
1000	12.0	21811	1000		
100	The state				
10.1	151	1.00	123	1000	1.000
ALC: N 144	10000	ana pilit 1			

101	(44)	100	640	(22)	162
125.0	12	100	1.21	121	121
121	121	123	(12)	199	100
100.0	14.	100	100	1.51	133
101	(2)	100	199	(11)	110
122	121	12.5	14.1	lai.	2.23
100	110	120	171	(83)	111
100	145	121	12.1	1.23	1.24
12.1	610	670	121	(2)	100
100	1.51	010	1.2	10.1	12
124	m	6.99	121	121	
100	12.0	10.0	1.0	121	14
12	101	171	111	120	12
1.00	12.1	12.1	التدا	121	100
121	(2)	111	121	151	111
1.1	100	تشا	-	1.23	14
163	m			121	12
1.25	1.44	161	100	100	10
171	171		en.	123	
10.	161	100	144	-	
1.11	121	111	100	101	811
100	121	-		100	1 -1
121		1.54		121	12
10.0	Read and a second	100	1000	1000	

Modelling ideas

Coupling: thermal and mechanical fields influence moisture

Variational framework for the thermo-mechanical behaviour of EVA

Interface contribution to the Principle of Virtual Work:

$$\Pi_{\rm m} = \int_{\mathcal{S}_0} \mathbf{g}_{\rm loc}^{\mathcal{T}} \mathbf{t} \mathrm{d}\mathcal{S},$$

where $g_{\rm loc}$ and t denote the relative displacement vector and the cohesive traction vector, respectively

Interface contribution to the energy balance for heat conduction:

$$\Pi_{\rm th} = \int_{\mathcal{S}_0} g_{\rm th} q \mathrm{d} S,$$

where $g_{\rm th}$ and q denote the relative temperature between the interface sides and the heat flux, respectively

Variational framework for the thermo-mechanical behaviour of EVA

Virtual variation of $\Pi_{\rm m}$ w.r.t. the displacement field:

$$\delta \Pi_{\rm m} = \delta \mathbf{u}^{\rm T} \int_{\mathcal{S}_0} \left(\frac{\partial \mathbf{g}_{\rm loc}}{\partial \mathbf{u}} \right)^{\rm T} \, \mathbf{t} \mathrm{d} \mathcal{S}$$

Virtual variation of $\Pi_{\rm th}$ w.r.t. the temperature:

$$\delta \Pi_{\rm th} = \delta T \int_{S_0} \left(\frac{\partial g_{\rm th}}{\partial T} \right) \, q \mathrm{d} S$$

After introducing the FE discretization, we consider the middle line (in 2D) or the surface (in 3D) of the interface element defined by a local frame with a rotation matrix \mathbf{R} whose components are related to the following vectors:

FE approximation

$$\mathbf{t}_1 = \frac{\partial \mathbf{x}}{\partial \xi}, \quad \mathbf{n} \cdot \mathbf{t}_1 = \mathbf{0}, \quad \text{in 2D}$$
$$\mathbf{t}_1 = \frac{\partial \overline{\mathbf{x}}^e}{\partial \xi}, \quad \mathbf{t}_2 = \frac{\overline{\mathbf{x}}^e}{\partial \eta}, \quad \mathbf{n} = \mathbf{t}_1 \times \mathbf{t}_2, \quad \text{in 3D}$$

aze

INSTITUTE

LUCCA

FE approximation

We relate $\mathbf{g}_{\mathrm{loc}}$ and g_{th} to the nodal displacement vector \mathbf{d}_{m} and to the nodal temperature vector \mathbf{d}_{th} :

$$\mathbf{g}_{ ext{loc}}\cong\mathbf{g}^{\mathsf{e}}_{ ext{loc}}=\mathsf{RN}_{ ext{m}}\mathsf{L}_{ ext{m}}\mathsf{d}_{ ext{m}}$$

 $g_{\rm th}\cong g_{\rm th}^e=N_{\rm th}L_{\rm th}d_{\rm th}$

FE approximation

Virtual variations of $\Pi_{\rm m}$ and $\Pi_{\rm th}$ in the FE approximation:

$$egin{aligned} \delta \Pi_{\mathrm{m}} &\sim \delta \mathbf{d}_{\mathrm{m}}^{\mathrm{T}} \int_{\mathcal{S}_{0}} \left(rac{\partial \mathbf{g}_{\mathrm{loc}}^{\mathbf{e}}}{\partial \mathbf{d}_{\mathrm{m}}}
ight)^{\mathrm{T}} \, \mathbf{t} \mathrm{d} \mathcal{S} \\ \delta \Pi_{\mathrm{th}} &\sim \delta \mathbf{d}_{\mathrm{th}}^{\mathrm{T}} \int_{\mathcal{S}_{0}} \left(rac{\partial \mathbf{g}_{\mathrm{th}}^{\mathbf{e}}}{\partial \mathbf{d}_{\mathrm{th}}}
ight)^{\mathrm{T}} \, q \mathrm{d} \mathcal{S} \end{aligned}$$

where:

$$egin{aligned} &rac{\partial \mathbf{g}^{\mathbf{e}}_{\mathrm{loc}}}{\partial \mathbf{d}_{\mathrm{m}}} = \mathbf{R} \mathbf{N}_{\mathrm{m}} \mathbf{L}_{\mathrm{m}} = \mathbf{R} \mathbf{B}_{\mathrm{m}} \ &rac{\partial g^{\mathbf{e}}_{\mathrm{th}}}{\partial \mathbf{d}_{\mathrm{th}}} = \mathbf{N}_{\mathrm{th}} \mathbf{L}_{\mathrm{th}} = \mathbf{B}_{\mathrm{th}} \end{aligned}$$

Residual vector

Discretized version of the virtual variation of Π_m^e :

$$\delta \boldsymbol{\Pi}_{\mathrm{m}}^{e} = \delta \boldsymbol{d}_{\mathrm{m}}^{\mathrm{T}} \int_{\mathcal{S}_{0}} \left(\boldsymbol{\mathsf{R}}\boldsymbol{\mathsf{B}}_{\mathrm{m}}\right)^{\mathrm{T}} \boldsymbol{t} \, \mathrm{d}\mathcal{S}$$

Discretized version of the virtual variation of Π_{th}^e :

$$\delta \Pi_{\rm th}^{e} = \delta \mathbf{d}_{\rm th}^{\rm T} \int_{\mathcal{S}_0} \mathbf{B}_{\rm th}^{\rm T} \boldsymbol{q} \, \mathrm{d} \boldsymbol{S}$$

The solution of $\delta \Pi_{\rm m}^e = \delta \mathbf{d}_{\rm m}^{\rm T} \mathbf{f}_{\rm m}^e = 0 \ \forall \, \delta \mathbf{d}_{\rm m}$ and $\delta \Pi_{\rm th}^e = \delta \mathbf{d}_{\rm th}^{\rm T} \mathbf{f}_{\rm th}^e = 0 \ \forall \, \delta \mathbf{d}_{\rm th}$ provides the components of the residual vector $\mathbf{f}^e = (\mathbf{f}_{\rm m}^e, \mathbf{f}_{\rm th}^e)$:

$$\mathbf{f}_{\mathrm{m}}^{e} = \int_{\mathcal{S}_{0}} (\mathbf{R}\mathbf{B}_{\mathrm{m}})^{\mathrm{T}} \mathbf{t} \, \mathrm{d}S$$
$$\mathbf{f}_{\mathrm{th}}^{e} = \int_{\mathcal{S}_{0}} \mathbf{B}_{\mathrm{th}}^{\mathrm{T}} q \, \mathrm{d}S$$

Tangent stiffness matrix

The linearization of the residual vector provides the tangent stiffness matrix components:

$$\mathbf{K}_{\mathrm{m,m}}^{e,k} = \frac{\partial \mathbf{f}_{\mathrm{m}}^{e,k}}{\partial \mathbf{d}_{\mathrm{m}}} = \int_{\mathcal{S}_{0}} \mathbf{B}_{\mathrm{m}}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \frac{\partial \mathbf{t}}{\partial \mathbf{d}} \, \mathrm{d}S = \int_{\mathcal{S}_{0}} \mathbf{B}_{\mathrm{m}}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{C}_{\mathrm{m,m}} \mathbf{R} \mathbf{B}_{\mathrm{m}} \, \mathrm{d}S$$

$$\mathbf{K}_{\mathrm{m,th}}^{e,k} = \frac{\partial \mathbf{f}_{\mathrm{m}}^{e,k}}{\partial \mathbf{d}_{\mathrm{th}}} = \int_{S_0} \mathbf{B}_{\mathrm{m}}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \frac{\partial \mathbf{t}}{\partial \mathbf{d}_{\mathrm{th}}} \, \mathrm{d}S = \int_{S_0} \mathbf{B}_{\mathrm{m}}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{C}_{\mathrm{m,th}} \, \mathrm{d}S$$
$$\mathbf{K}_{\mathrm{th,m}}^{e,k} = \frac{\partial \mathbf{f}_{\mathrm{th}}^{e,k}}{\partial \mathbf{d}_{\mathrm{m}}} = \int_{S_0} \mathbf{B}_{\mathrm{th}}^{\mathrm{T}} \frac{\partial q}{\partial \mathbf{d}_{\mathrm{m}}} \, \mathrm{d}S = \int_{S_0} \mathbf{B}_{\mathrm{th}}^{\mathrm{T}} \frac{\partial q}{\partial g_{\mathrm{n}}} \mathbf{e}_{\mathrm{n}} \mathbf{B}_{\mathrm{m}} \, \mathrm{d}S$$

$$\mathbf{K}_{\mathrm{th,th}}^{e,k} = \frac{\partial \mathbf{f}_{\mathrm{th}}^{e,k}}{\partial \mathbf{d}_{\mathrm{th}}} = \int_{\mathcal{S}_0} \mathbf{B}_{\mathrm{th}}^{\mathrm{T}} \frac{\partial q}{\partial \mathbf{d}_{\mathrm{th}}} \, \mathrm{d}\mathcal{S} = \int_{\mathcal{S}_0} \mathbf{B}_{\mathrm{th}}^{\mathrm{T}} \mathbf{C}_{\mathrm{th,th}} \mathbf{B}_{\mathrm{th}} \, \mathrm{d}\mathcal{S}$$

Newton-Raphson scheme

The following equations set for the computation of the corrector $\Delta \mathbf{d} = (\Delta \mathbf{d}_{\mathrm{m}}, \Delta \mathbf{d}_{\mathrm{th}})^{\mathrm{T}}$ at each iteration k is used:

 $\mathbf{K}^{e,k} \Delta \mathbf{d} = -\mathbf{f}^{e,k}$ $\mathbf{d}^{k+1} = \mathbf{d}^k + \Delta \mathbf{d}$

where:

$$\mathbf{K}^{e,k} = \left[egin{array}{ccc} \mathbf{K}^{e,k} & \mathbf{K}^{e,k}_{ ext{m,th}} \ \mathbf{K}^{e,k}_{ ext{th,m}} & \mathbf{K}^{e,k}_{ ext{th,th}} \end{array}
ight]$$

2D interface element

$$\mathbf{d}_{\rm m} = (u_1, v_1, u_2, v_2, u_3, v_3, u_4, v_4)^{T}$$
$$\mathbf{d}_{\rm th} = (T_1, T_2, T_3, T_4)^{T}$$

Matrix operators: mechanical part

The matrix operators for the mechanical part are:

 $\mathbf{N}_{\mathrm{m}} = \begin{bmatrix} N_1 \mathbf{I} & N_2 \mathbf{I} \end{bmatrix}$

where $\mathit{N}_1=(1-\xi)/2$ and $\mathit{N}_2=(1+\xi)/2$, $\xi\in[-1,+1]$

	[- I	0	0	1]
$L_{m} =$	0	$-\mathbf{I}$	Т	0

with I and O 2×2 identity and zero matrices

$$\mathbf{R} = \begin{bmatrix} t_{1,x} & t_{1,y} \\ n_x & n_y \end{bmatrix}$$

Matrix operators: mechanical part

The traction vector in 2D reads:

 $\mathbf{t} = (\tau, \sigma)^T$

and the constitutive equation (linear tension cut-off cohesive zone model) is:

 $\textbf{t} = \textbf{C}_{m,m}\textbf{g}_{loc}$

where:

$$\mathbf{C}_{\mathrm{m,m}} = \frac{\partial \mathbf{t}}{\partial \mathbf{g}_{\mathrm{loc}}} = \begin{bmatrix} G/h & 0\\ 0 & E/h \end{bmatrix}$$

Assuming that $E = E(\overline{T})$ and $G = G(\overline{T})$, where $\overline{T} = \mathbf{N}_{th}\mathbf{M}_{th}\mathbf{d}_{th}$:

$$\mathbf{C}_{\mathrm{m,th}} = \frac{\partial \mathbf{t}}{\partial \mathbf{d}_{\mathrm{th}}} = \frac{\partial \mathbf{t}}{\partial \overline{\mathcal{T}}} \frac{\partial \overline{\mathcal{T}}}{\partial \mathbf{d}_{\mathrm{th}}} = \frac{\partial \mathbf{t}}{\partial \overline{\mathcal{T}}} \mathbf{N}_{\mathrm{th}} \mathbf{M}_{\mathrm{th}}$$

A thermo-viscoelastic model based on fractional calculus

$$E(t,\overline{T}) = a(\overline{T}) \frac{t^{-\alpha(\overline{T})}}{\Gamma(1-\alpha(\overline{T}))}$$

Paggi, M and Sapora, A. An accurate thermo-visco-elastic rheological model for ethylene vinyl acetate based on fractional calculus. Int J Photoenergy, in press, paper 252740

Pietro Lenarda and Marco Paggimarco.paggi

Matrix operators: thermal part

The matrix operators for the thermal part are:

 $\mathbf{N}_{\mathrm{th}} = \begin{bmatrix} N_1 & N_2 \end{bmatrix}$

where $N_1 = (1-\xi)/2$ and $N_2 = (1+\xi)/2$, $\xi \in [-1,+1]$

$$\mathbf{L}_{\rm th} = \begin{bmatrix} -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{bmatrix}$$

Considering a Fourier type constitutive law for the interface:

$$q = \left(1 - rac{g_{
m n}}{g_{
m n,c}}
ight) q_0 = -\left(1 - rac{g_{
m n}}{g_{
m n,c}}
ight) k_{
m th} g_{
m th} = -\left(1 - rac{g_{
m n}}{g_{
m n,c}}
ight) k_{
m th} {f B}_{
m th} {f d}_{
m th}$$

we obtain:

$$\mathbf{C}_{\mathrm{th,m}} = \frac{\partial q}{\partial \mathbf{d}_{\mathrm{m}}} = -\frac{q_0}{g_{\mathrm{nc}}} \mathbf{e}_{\mathrm{n}} \mathbf{B}_{\mathrm{m}}; \quad \mathbf{C}_{\mathrm{th,th}} = \frac{\partial q}{\partial \mathbf{d}_{\mathrm{th}}} = -k_{\mathrm{th}} \left(1 - \frac{g_{\mathrm{n}}}{g_{\mathrm{n,c}}}\right) \mathbf{B}_{\mathrm{th}}$$

The mass conservation law governing moisture diffusion is:

$$\rho \frac{\partial c}{\partial t} = -\frac{\partial \eta}{\partial s}$$

where η is the flux, c(s, t) is the concentration, and ρ is the EVA mass density. We assume the Fick's law holds:

$$\eta = -D\frac{\partial c}{\partial s}$$

where $D = D(\overline{T}, g_n)$ is the diffusion coefficient. The PDE governing moisture diffusion is:

$$\rho \frac{\partial c}{\partial t}(s,t) - D \frac{\partial^2 c}{\partial s^2}(s,t) = 0$$

The weak form of the problem reads:

$$G(c,\delta c) = \int_{\Gamma} \frac{\partial c}{\partial t} \delta c \mathrm{d}s + \int_{\Gamma} \frac{\partial c}{\partial s} D \frac{\partial \delta c}{\partial s} \mathrm{d}s = 0$$

FE discretization in space

The isoparametric FE discretization with linear shape functions $N_1 = (1 - \xi)/2$ and $N_2 = (1 + \xi)/2$ is introduced:

$$s = \mathbf{N}_c \mathbf{x}, \quad c = \mathbf{N}_c \mathbf{c}, \quad \delta c = \mathbf{N}_c \delta \mathbf{c}$$

and, within the Bubnov-Galerkin framework, the semi-discretized weak form reads:

$$G_{h} = \delta \mathbf{c}^{\mathrm{T}} \left(\int_{\Gamma_{h}} \rho \mathbf{N}_{c}^{\mathrm{T}} \mathbf{N}_{c} \, \mathrm{d}s \right) \dot{\mathbf{c}} + \delta \mathbf{c}^{\mathrm{T}} \left(\int_{\Gamma_{h}} D \mathbf{B}_{c}^{\mathrm{T}} \mathbf{B}_{c} \, \mathrm{d}s \right) \mathbf{c} = \mathbf{0}, \; \forall \delta \mathbf{c} \in \mathbb{R}^{2 \times 1}$$

Leading to the following matrix form:

 $\mathsf{M}\dot{\mathsf{c}}(t) + \mathsf{D}\mathsf{c}(t) = \mathbf{0}$

where
$$\mathbf{M} = \int_{\Gamma_h} \rho \mathbf{N}_c^{\mathrm{T}} \mathbf{N}_c \, \mathrm{d}s$$
, $\mathbf{D} = \int_{\Gamma_h} D \mathbf{B}_c^{\mathrm{T}} \mathbf{B}_c \, \mathrm{d}s$

Time integration

The backward Euler method (implicit solution scheme) is adopted:

$$(\mathbf{M} + \mathbf{D}\Delta t) \mathbf{c}^{m+1} = \mathbf{M}\mathbf{c}^m, \quad m = 1, \dots, M$$

The residual vector is defined as:

$$\mathbf{f}_{c}^{e} = \int_{\Gamma_{h}} \rho \mathbf{N}_{c}^{\mathrm{T}} \dot{c} \, \mathrm{d}s - \int_{\Gamma_{h}} \mathbf{B}_{c}^{\mathrm{T}} \eta \, \mathrm{d}s$$

where:

$$\dot{c} = \mathbf{N}_{c} \dot{\mathbf{c}}^{m}, \quad \eta = -D\mathbf{B}_{c} \mathbf{c}^{m}$$

$$\mathbf{N}_{c} = [N_{1} \ N_{2}] \quad \mathbf{B}_{c} = \begin{bmatrix} \frac{\partial N_{1}}{\partial \xi} \ \frac{\partial N_{2}}{\partial \xi} \end{bmatrix}$$

Dependency of D on T and g_n

The diffusivity depends on \overline{T} according to an Arrhenius equation [M.D. Kempe, Sol. Mat. & Solar Cells 90 (2006) 2720–2738]

 $D_0 = A \exp\left[-E_a/(R\overline{T})\right]$

We also postulate a linearly dependency on g_n as:

$$D = D_0 \text{ for } g_n < g_{nc}, \quad D = D_0 \frac{g_n}{g_{nc}} \text{ for } g_n \ge g_{nc}$$

INSTITUTE

STUDIES LUCCA

Numerical example (1)

$$D=5 imes 10^{-5}~{
m cm}^2/{
m s},~\overline{T}=80^{\circ}{
m C}$$

Numerical example (2)

t=1s, 1000h, 3000h, 20000h

Numerical examples

Pietro Lenarda and Marco Paggimarco.paggi@

Selected references

- Borri, C and Paggi, M. Topological characterization of antireflective and hydrophobic rough surfaces: are random process theory and fractal modeling applicable? J Phys D, 48 (4) paper 045301, (2015)
- Paggi, M and Sapora, A. An accurate thermo-visco-elastic rheological model for ethylene vinyl acetate based on fractional calculus. Int J Photoenergy, in press, paper 252740
- Ojo, SO and Grivet Talocia, S and Paggi, M. Model order reduction applied to heat conduction in photovoltaic modules. Comp Struct, 119:477-486 (2015)
- Reinoso, J and Paggi, M. A consistent interface element formulation for geometrical and material nonlinearities. Comp Mech, 54:1569-1581 (2014)
- Paggi, M and Berardone, I and Infuso, A and Corrado, M. Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules. Sci Rep, 4:1-7 (2014)
- Berardone, I and Corrado, M and Paggi, M. A generalized electric model for mono and polycrystalline silicon in the presence of cracks and random defects. Energy Proc, 55:22-29 (2014)
- Infuso, A and Corrado, M and Paggi, M. Image analysis of polycrystalline solar cells and modeling of intergranular and transgranular cracking. J Eur Ceram Soc, 34:2713-2722 (2014)
- Sapora, A and Paggi, M. A coupled cohesive zone model for transient analysis of thermoelastic interface

debonding. Comp Mech, 53:845-857 (2014)

Conclusion and outlook

- Variational framework for studying hygro-thermo-mechanical problems in PV modules
- Tangent operators for implicit solution schemes
- ► Simplification of the encapsulant with interface elements
- Coupling between moisture diffusion and the other fields accounted for in the constitutive parameters
- Preliminary examples are promising and future developments regard applications to 3D problems and experimental comparisons

Acknowledgements

Multi-field and multi-scale Computational Approach to design and durability of Photovoltaic Modules – CA2PVM

http://musam.imtlucca.it/CA2PVM.html

Annual report 2014: http://musam.imtlucca.it/Report_2014.pdf

Conclusion and outlook

Pietro Lenarda and Marco Paggimarco.paggi@