Analysis of Laminated Glass Structures for Photovoltaic Applications

Holm Altenbach

Otto-von-Guericke-Universität Magdeburg, Germany

Workshop Impact of mechanical and thermal loads on the long term stability of PV modules November 5th, 2013 Hameln, Germany

FAKULTÄT FÜR MASCHINENBAU

DFG - Graduiertenkolleg Micro-Macro-Interactions of Structured Media and Particle Systems

November 5th, 2013

Holm Altenbach

Analysis of Laminated Glass Structures

Acknowledgement

This lecture is based on contributions of my co-workers and former PhD students

apl.Prof.Dr.-Ing.habil. Konstantin Naumenko

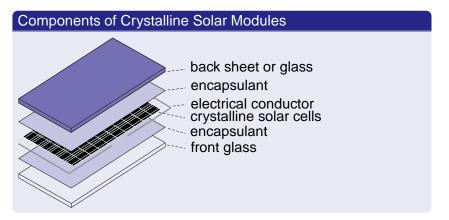
Prof.Dr. Victor Eremeyev

Dr.-Ing. Stefan Schulze

Dr.-Ing. Ulrich Eitner

Dr.-Ing. Matthias Weps

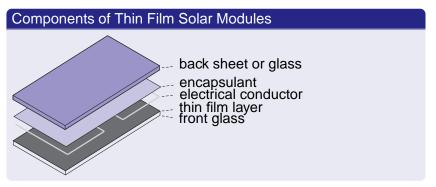
Dr.-Ing. Matthias Sander



Reference:

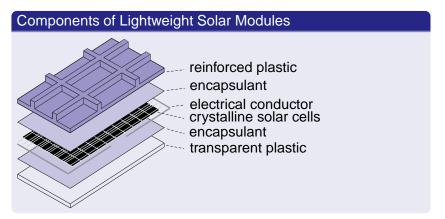
Schulze, S.-H.; Pander, M.; Naumenko, K.; Altenbach, H.: Analysis of laminated glass beams for photovoltaic applications.

- Int. J. Solids & Struct. 49(2012)15-16. - pp. 2027-2036



Reference: Schulze, S.-H.; Pander, M.; Naumenko, K.; Altenbach, H.: Analysis of laminated glass beams for photovoltaic applications.

- Int. J. Solids & Struct. 49(2012)15-16. - pp. 2027-2036



Weps, M.; Naumenko, K.; Altenbach, K.: Unsymmetric three-layer laminate with soft core for photovoltaic modules. - Composite Structures 105(2013). - pp. 332-339

Environmental Influences

- Wind pressure, wind suction
- Snow and ice loads
- Ambient temperature changes (thermal cycles), hot spots
- Ultraviolet light, moisture

Damage Mechanisms

- Cracks in solar cells
- Delamination
- Interconnection and solder failures
- Ultraviolet and moisture degradation

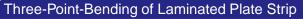
After: IEC 61215 (2005), Eitner, U.: Thermomechanics of photovoltaic modules, PhD thesis, 2011

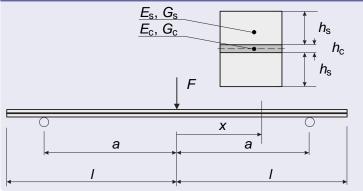
Benefits of Design

- Efficiency during guaranteed service life
- Cost reduction
- Reduced effort for analysis and testing

Problems for Mechanics

- Encapsulants are used to compensate mechanical and thermal strains of bottom and top layers and to minimize the loading of solar cells
- Encapsulant materials are EVA (ethylene-vinylacetate), PVB (polyvinylbutyral), PUR (polyurethane)
- Properties of encapsulants change after the lamination process or during the service.
- Robust plate theories are required to evaluate test results



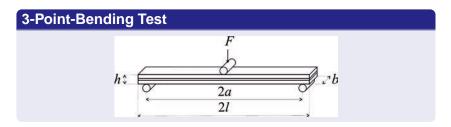


Material Properties of Layers

 E_c/E_s is in the range of 10^{-5} and 10^{-2} , for example Glass: $E_s = 60 - 73 \cdot 10^3$ MPa, EVA: $E_c = 8$ MPa

Items under Investigation

- Development of a structural mechanics model for three-point bending tests on laminated glass beams;
- Comparison of the model with established methods;
- Application of the model for calculation of mechanical properties of the polymeric interlayer between the covering glass of the beam,
- Formulation of future tasks



Aims of this Study

Laminated Glass

Aşik & Tezcan (2005, 2006) Biolzi et al. (2010) Foraboschi (2012) Galuppi et al. (2012) Ivanov (2006) Koutsawa & Daya (2007) **Photovoltaic Plates**

Aßmus et al. (2012) Corrado and Paggi (2013) Eitner et al. (2010, 2011) Sander et al. (2013) Schulze et al. (2012) Weps et al. (2013)

Development of a Theory for PV Plates - Requirements

- Layer-wise type theory
- Robustness and applicability of classical solution methods
- Accurate representation of transverse shear strains

Aims of this Study

Approaches to Structural Analysis

Laminated Glass

Layer-wise type theories: load transfer between the layers can be explicitly analyzed, experimental validation for three layer laminates

Photovoltaic Plates

Aßmus et al. (2012) Corrado and Paggi (2013) Eitner et al. (2010, 2011) Sander et al. (2013) Schulze et al. (2012) Weps et al. (2013)

Development of a Theory for PV Plates - Requirements

- Layer-wise type theory
- Robustness and applicability of classical solution methods
- Accurate representation of transverse shear strains

Aims of this Study

Approaches to Structural Analysis

Laminated Glass

Aşik & Tezcan (2005, 2006) Biolzi et al. (2010) Foraboschi (2012) Galuppi et al. (2012) Ivanov (2006) Koutsawa & Daya (2007)

Photovoltaic Plates

Mechanical analysis by 3D (solid) finite elements: differences in properties of constituents, low thickness of layers \Rightarrow additional numerical effort

Development of a Theory for PV Plates - Requirements

- Layer-wise type theory
- Robustness and applicability of classical solution methods
- Accurate representation of transverse shear strains

Basic Assumptions, Models

Features of Laminated Glass in Photovoltaic Applications

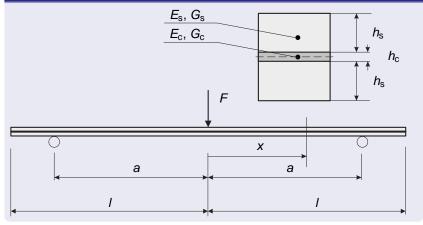
- layered composite,
- stiff skin layers and compliant core layer, if PVB (Polyvinyl butyral) as a core material: $\mu = 10^{-2} \dots 10^{-5}$, for classical sandwiches $\mu = 10^{-2} \dots 10^{-1}$ ($\mu = G_c/G_s$),
- thin core layer, relatively thick skin layers

Application of Three Structural Mechanics Models

- First Order Shear Deformation Theory ⇒ calculation of beam bending and transverse shear stiffness
- Development of a Layer Wise Beam Theory (LWT)
 ⇒ layer deformation is described by beam equations, development of closed form solutions
- Output Application of finite element analysis (solid type elements)
 ⇒ Verification of FSDT and LWT

First Order Shear Deformation Theory I

Geometry and loading of the beam



First Order Shear Deformation Theory II

Equilibrium for the Part of the Beam with the Length a + x

$$M(x)=\frac{F}{2}(a-x), \quad Q(x)=-\frac{F}{2}, \quad 0\leq x\leq a$$

Constitutive Equations for the Stress Resultants

$$M(x) = B\varphi', \quad Q(x) = \Gamma(w' + \varphi), \quad (\dots)' = \frac{d}{dx}(\dots)$$

First Order Shear Deformation Theory III

Solutions for Rotation and Deflection

BC: w(a) = 0 and the symmetry condition $\varphi(0) = 0$

$$\varphi(\mathbf{x}) = \frac{F}{4B}\mathbf{x}(2a-\mathbf{x}), \tag{1}$$

$$w(x) = \frac{F}{12B}(a-x)(2a^2+2xa-x^2) + \frac{F}{2\Gamma}(a-x), \quad (2)$$

$$0 \le x \le a \quad (3)$$

Maximum Deflection

$$w_{\text{max}} = w(0) = \frac{Fa^3}{6B} + \frac{Fa}{2\Gamma}, \quad (4)$$
(...) -Euler - Bernoulli, (...) -transverse shear (5)

First Order Shear Deformation Theory IV

Bending Stiffness

 E_i - Young's modulus, G_i - shear modulus, h_i - thickness of the layer *i*, *i* = c, s

$$B = \frac{bh^3}{12} \left[E_{\rm s}(1 - \alpha^3) + E_{\rm c} \alpha^3 \right], \quad \alpha = \frac{h_{\rm c}}{h}$$

 $h = 2h_s + h_c$ - beam height, *b* - beam width With $E_c/E_s \ll 1$ the stiffness equation can be simplified to

$$B = E_{\rm s} \frac{bh^3}{12} (1 - \alpha^3)$$

Introduction and Motivation Structural Model for Laminated Glass Beams Conclusions and Outlook

First Order Shear Deformation Theory V

Transverse Shear Stiffness

$$\tilde{\Gamma} = \frac{1}{3}G_{\rm s}h\lambda^2 \left[1 - \alpha^3(1-\mu)\right], \quad \mu = \frac{G_{\rm c}}{G_{\rm s}} \tag{6}$$

with

$$\sin \lambda \alpha \sin \lambda (1 - \alpha) = \mu \cos \lambda \alpha \cos \lambda (1 - \alpha)$$
(7)

First Order Shear Deformation Theory VI

Sandwich

November 5

Reissner's formula (1947): $\tilde{\Gamma} = G_c h$

For a laminated glass plate having a thin core layer with the low shear modulus the approximate solution of Eq. (7)

$$\lambda^2 = \frac{\mu}{\alpha(1-\alpha)}$$

Transverse stiffness

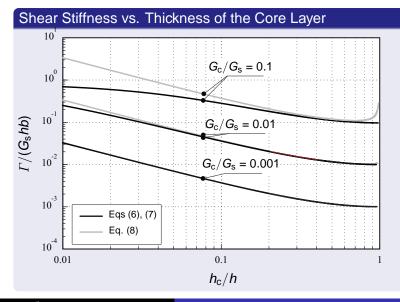
$$\tilde{T} = \frac{1}{3}G_{\rm c}h\frac{1-\alpha^3(1-\mu)}{\alpha(1-\alpha)} \tag{8}$$

Very Thin and Compliant Layers: $\alpha \ll 1$ and $\mu \ll 1$

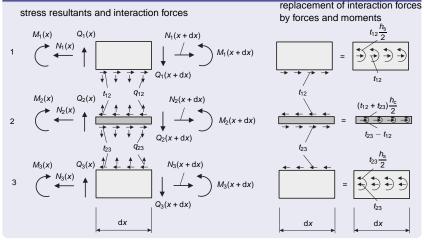
$$B = E_{\rm s} \frac{bh^3}{12}, \quad \Gamma = \frac{G_{\rm c}bh}{3\alpha}$$
(9)

2.2013 Holm Altenbach Analysis of Laminated Glass Structures

First Order Shear Deformation Theory VII



Layer-Wise Beam Theory I



Layer-Wise Beam Theory II

Balance of Forces and Moments Applied to each Layer

$$N'_1 + t_{12} = 0, \quad N'_2 + t_{23} - t_{12} = 0, \quad N'_3 - t_{23} = 0,$$
 (10)

$$Q'_1 + q_{12} = 0, \quad Q'_2 + q_{23} - q_{12} = 0, \quad Q'_3 - q_{23} = 0,$$
 (11)

$$M_{1}'-Q_{1}+t_{12}\frac{h_{s}}{2}=0, M_{2}'-Q_{2}+(t_{12}+t_{23})\frac{h_{c}}{2}=0, M_{3}'-Q_{3}+t_{23}\frac{h_{s}}{2}=0$$
(12)

Resultants of the Beam vs. Resultants of Layers

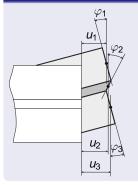
$$N = N_1 + N_2 + N_3, \quad Q = Q_1 + Q_2 + Q_3, M = M_1 + M_2 + M_3 + (N_3 - N_1) \frac{h_s + h_c}{2}$$
(13)

Layer-Wise Beam Theory III

Kinematical Relations

$$u_1 + \varphi_1 \frac{h_s}{2} = u_2 - \varphi_2 \frac{h_c}{2}, u_3 - \varphi_3 \frac{h_s}{2} = u_2 + \varphi_2 \frac{h_c}{2}, w_i = w$$
 (14)

Axial Displacements and Cross Section Rotations



Layer-Wise Beam Theory IV

Constitutive Equations

$$N_{i} = D_{i}u'_{i}, \qquad Q_{i} = \Gamma_{i}(w' + \varphi_{i}), \qquad M_{i} = B_{i}\varphi'_{i},$$

$$D_{i} = E_{i}bh_{i}, \qquad \Gamma_{i} = \kappa_{i}G_{i}bh_{i}, \qquad B_{i} = E_{i}\frac{bh_{i}^{3}}{12}$$
(15)

Assumptions

- the bending resistance of the beam is primarily determined by the skin layers,
- the skin layers are shear rigid

Layer-Wise Beam Theory V

Deflection

$$w(x) = \begin{cases} \frac{F}{12B}(2a^{2} + 2xa - x^{2})(a - x) + \frac{F}{2\Gamma_{L}}(a - x) \\ + \frac{F}{2\Gamma_{L}\beta}(\sinh\beta x - \sinh\beta a) \\ + \frac{F}{2\Gamma_{L}\beta}\left(\frac{\sinh\beta(l - a) - \sinh\beta l}{\cosh\beta l}(\cosh\beta x - \cosh\beta a)\right), \\ 0 \le x \le a, \\ \frac{Fa^{2}}{4B}(a - x) \\ + \frac{F}{2\Gamma_{L}}\frac{1 - \cosh\beta a}{\beta\cosh\beta l}(\sinh\beta(l - a) - \sinh\beta(l - x)), \\ a < x \le l, \end{cases}$$
(16)

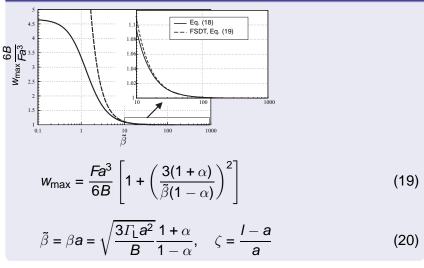
$$\Gamma_{\rm L} = \frac{4}{9} \Gamma_{\rm c} \left(\frac{1 + \alpha + \alpha^2}{\alpha (1 + \alpha)} \right)^2 \tag{17}$$

Layer-Wise Beam Theory V

Maximum:

$$w_{\text{max}} = \frac{Fa^{3}}{6B} + \frac{Fa}{2\Gamma_{L}}$$
(18)
+ $\frac{F}{2\Gamma_{L}\beta} \left(\frac{\sinh\beta(I-a) - \sinh\beta I}{\cosh\beta I} (1 - \cosh\beta a) - \sinh\beta a \right)$

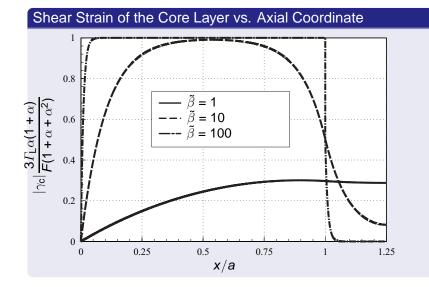
Numerical Results I



November 5th, 2013

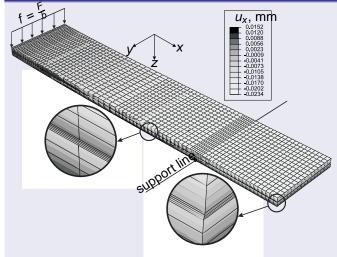
Holm Altenbach

Numerical Results II

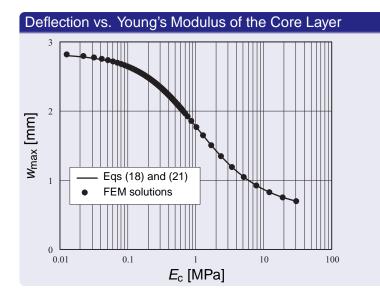


FEM I

FE Mesh and Axial Displacement u_x for $E_c = 3.5$ MPa



FEM II



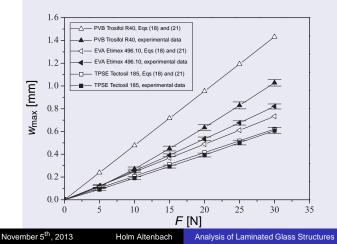
November 5th, 2013

Experimental Proof

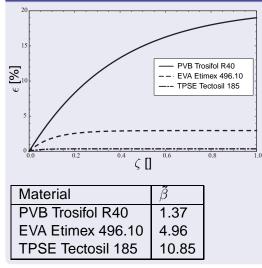
Measured and Calculated Deflection

$\Gamma_{\rm L} = 4G_{\rm c}bh/9\alpha$

(21)



Difference Beam Length to Support Span ζ



Conclusions and Outlook

Formulation

- Layer-wise plate theory for PV-laminates
- Closed form solution for plate strip
- Verifications: comparison with FEA and experimental data

Conclusions

 The layer-wise theory reflects basic features of deformation and stress states for laminates with soft core

Conclusions and Outlook

Formulation

- Layer-wise plate theory for PV-laminates
- Closed form solution for plate strip
- Verifications: comparison with FEA and experimental data

Conclusions

 The layer-wise theory reflects basic features of deformation and stress states for laminates with soft core

Conclusions and Outlook

Current and Future Studies

- Solutions for plates with real boundary conditions (frames)
- Consideration of inelastic properties for encapsulant materials
- Thermo-mechanical analysis
- Analysis of damage and fracture processes

Further questions: holm.altenbach@ovgu.de