Novel n-type wafer-based silicon solar cell architectures being developed at imec IMEC ENERGY

Ivan Gordon

THE MARKET SHARE OF N-TYPE DEVICES IS EXPECTED TO INCREASE SUBSTANTIALLY

imec

© IMEC 2012

THE CURRENT IMEC SI-PV ROADMAP IS FOCUSED ON N-TYPE DEVICES

High-efficiency n-PERT solar cells

2-side contacted devices on 156x156 mm² n-type wafers

High-efficiency IBC solar cells

• Back-contact devices on 156x156 mm² n-type wafers

I^x-module approach

• Novel approach to process ultra-thin n-type Si-foils bonded on glass

IMEC © IMEC 2015

n-type PERT cells with Cu contacts

Interdigitated back contact cells

Module-level processing of epitaxial foils

IMCC © IMEC 2015

REAR EMITTER n-PERT DEVICE STRUCTURE

- Rear side
 - p+ emitter: BBr3 diffusion
 - Dielectric passivation with local contacts

THE AMOUNT OF Ag USED PER CELL NEEDS TO DECREASE SUBSTANTIALLY

imec © IMEC 2012

IMEC FOCUSES ON REPLACING Ag SCREEN PRINTING BY Cu PLATING

Cu metallisation can give you

- Cost reduction (Cu vs. Ag)
- Increased performance (lower resistance, less shadow losses, higher resistive diffused layers, ...)

Imec focuses on

- Cost effective and upscaleable processing
- Stability and reliability evaluation

imec

© IMEC 2012

HIGH EFFICIENCIES CAN BE REACHED WITHOUT LIGHT-INDUCED DEGRADATION

Best devices obtained so far:

					– Front · Selective
	Jsc (mA/cm²)	Voc (mV)	FF (%)	Eta (%)	FSF by laser doping
Measured at ISE CalLab	39.9	684	80.7	22.0	Rear : ALD Al2O3 surface
					passivation

No light induced degradation in n-type cells

 $Area = 226 cm^2$

As processed	Jsc	Voc	FF	Eta
	(mA/cm²)	(mV)	(%)	(%)
p-type PERC	39.4	662	78.6	20.5
n-type PERT	39.4	676	80.2	21.4
After 12h light soaking at 1 sun	Jsc	Voc	FF	Eta
	(mA/cm²)	(mV)	(%)	(%)
After 12h light	Jsc	Voc	FF	Eta
soaking at 1 sun	(mA/cm ²)	(mV)	(%)	(%)
p-type PERC	39.3	659	76.6	19.8
After 12h light	Jsc	Voc	FF	Eta
soaking at 1 sun	(mA/cm ²)	(mV)	(%)	(%)
p-type PERC	39.3	659	76.6	19.8
n-type PERT	39.4	675	80.3	21.4

imec

n-type PERT cells with Cu contacts

Interdigitated back contact cells

Module-level processing of epitaxial foils

IMEC 2015

INTERDIGITATED BACK CONTACT SILICON SOLAR CELLS

IBC: STATE-OF-THE-ART

Industrial and semi-industrial homo-junction IBC cells

Reference	Year	Substrate	Area (cm²)	Eff. (%)
¹ D. Smith, SunPower	2014	CZ, n-type	155	24.5
¹ D. Smith, SunPower	2014	CZ, n-type	121	25.0
² C.B. Mo, Samsung SDI/Varian	2012	CZ, n-type	155	22.4
³ A. Halm / J. Libal, ISC Konstanz / Silfab	2012	CZ, n-type	243	21.3
⁴ Bosch / ISFH	2013	CZ, n-type	~240	22.1
⁵ E. Franklin, ANU/Trina Solar	2014	CZ, n-type	~240	22.9

¹ D. Smith et al., 40th IEEE PVSC, Denver, USA (2014)

²C.B. Mo et al., 27nd EUPVSEC, Frankfurt, Germany (2012)

³A. Halm et al., 27nd EUPVSEC, Frankfurt, Germany (2012)

⁴ Bosch SE, press release (2013)

⁵ E. Franklin et al., SNEC, Shanghai, China (2014)

IMEC 2015

SMALL AREA IBC CELLS

- Wafers:
 - 15.6x15.6 cm2 semi-square
 - n-type Cz
 - Commercially available
- Processing:
 - Doping: diffusion
 - Patterning: photolithography
- Layout:
 - 25 cells with an active area of 2x2 cm²
 - 5 different designs with different contact fractions for BSF and emitter

LARGE AREA IBC CELLS

- Wafers:
 - 15.6x15.6 cm² semi-square
 - n-type Cz
 - Commercially available
- Processing:
 - Doping: diffusion
 - Patterning: laser ablation and screen printing
- Cells:
 - One cell
 - 5 emitter busbars with 8 solder points on each busbar
 - 4 BSF busbars with 7 solder points on each busbar

IBC CELLS ARE SLIGHTLY BOWED

- Cu-plated metallization used(1-sided)
- Ag-plated capping for soldering

 Module processing: Bonding before interconnection to support (thin and/or curved) cells during interconnection

ENVISAGED INTERCONNECTION FLOW

IMEC 2015

ONE-CELL LAMINATE DEMONSTRATOR

imec

CELL IS FIRST BONDED TO GLASS

Silicone bonding

- Single layer coating on glass + curing (15 min @ 100°C) ("hybrid" stencil printing / blade coating)
- Alignment, placement, bonding (vacuum laminator)

INTERCONNECTION TABS ARE THEN APPLIED

Soldering/tabbing process (manual)

FINALLY, THE DEVICE IS ENCAPSULATED

Silicone coating + lamination

- Dispensing of silicones
- Placement of transparent back sheet
- Lamination cycle ~6 min @ 110°C

RESULTS

	J _{sc} [mA/cm²]	V _{oc} [mV]	FF [%]	Eta [%]
Standalone cell	40.1	684	75.5	20.7
Laminate	39.6	682	71.2	19.2

© IMEC 2015

RESULTS

	J _{sc} [mA/cm ²	י [נ	V _{oc} nV]	FF [%]	η [%]	
Standalone cell	40.1	e	684	75.5	20.7	
One-cell laminate	39.6	6	682	71.2	19.2	
J _{sc} drop caused by increased reflection at the glass/air interface			F ta C a te	F drop c abs (0.18 an be ta dvancec echnolog	aused by na 3x1 mm²) ackled by mo I module jies for IBC c	rrow re ells

n-type PERT cells with Cu contacts

Interdigitated back contact cells

Module-level processing of epitaxial foils

IMEC 2015

REDUCING COST BY REDUCING SI THICKNESS

IMEC 2015

24

IMEC'S APPROACH: FROM EPITAXIAL SILICON FOILS TO DEVICES ON GLASS

POROUS SILICON SERVES AS TEMPLATE FOR EPITAXY AND AS DETACHMENT LAYER

IMEC © IMEC 2015

Epifoil – 40 µm, n-type

Suspended Epifoil

3.0kV 5.1mm x40.0k LA2(UL) 10:1

1.00um

High-porosity layer - 300 nm

Parent substrate - 725 µm

imec © IMEC 2015

11X11CM² FOILS ARE ROUTINELY DETACHED

imec © IMEC 2015

FROM EPITAXIAL SILICON FOILS TO DEVICES **ON GLASS**

Thermal CVD epitaxy

© IMEC 2015

Front-surface processing

Detachment and bonding on glass

Rear-side processing with foils bonded on glass

Targeted cell structure based on a-Si heterojunction and back contacts (HJT-IBC)

29

DEVICE INTEGRATION

At device level: first simple devices of epifoils bonded to glass using silicones: **Voc values ~ 695 mV**

SUMMARY

- World-class n-PERT cells of 22.0% efficiency are made using Cu-plated front contacts
- Large-area IBC cells require novel interconnection and encapsulation processes
- We are working towards the processing of ultra-thin foils into working devices directly at module level

Acknowledgements:

All members of imec's PV department Imec's Industrial Affiliation Programme EU-FP7 projects "Cheetah" and "Cu-PV"