

Residual Stress measurement in solar cells

New analytical opportunities for Research and QualityControl

Thorbjoern Schoenbeck PANalytical GmbH Kassel

Workshop 05.11.2013

THE ANALYTICAL X-RAY COMPANY

ABOUT PANALYTICAL

About PANalytical

- Founded in 2003
- Spin–Off from PHILIPS
- Headquarter in Almelo, The Netherlands
- Manufacturer of X-ray equipment since 1920
- 1.100 employees globally
- 220 employees in R&D Almelo
- About 800 X-ray systems per year

PANalytical product portfolio

X-ray diffraction platform: EMPYREAN

Core components: PIXcel3D x-ray detector & stages

BASICS OF RESIDUAL STRESS ANALYSIS BY X-RAYS

WINDOW

EMITTER

BASE

BSF

Solar Cells and PV modules – from XRD viewpoint

Back-side contact (Ag)

TUNNEL JUNCTION InGaP WINDOW I InGaAs EMITTER InGaAs BASE 1 InGaP BSF TUNNEL IUNCTION InGaAs BUFFER InGaP HETERO LAYER Ge BASE Ge BSF

Al metallic contacts

AR COATING

GaAs

AlInP

InGaP

InGaP

AlGaInP

n⁺

n

p

p⁺

n⁺

n

p

p

n

n

p

Layered structure

Thermal processing

Residual Stress

Graphics courtesy of pveducation.org

How to analyze Residual stress by XRD?

Stress in sample = orientation-dependet peak shift

Displacement plot

Displacement

🙀 X'Pert Stress Plus - STAHL-N.RSC

<u>File Edit View Report Tools Help</u>

Principal methods

Single-hkl:

- One specific reflection
- Sample needs to be tilted:
 - >Omega tilt
 - Chi tilt
- Analytical volume is large and changes with tilt
- Bulk stress measurement

Principal methods

Multi-hkl:

- Several reflections from one phase
- Fixed incident angle
- Fixed analytical volume
 - Thin films
 - Gradients
- Grazing incidence: large analytical area

Stress in a Solar cell semiconductor

RESIDUAL STRESS & STRESS GRADIENTS IN SOLAR CELLS

Residual stress analysis in layers

Depth-resolved phase analysis

Residual Stress gradient on CdTe cell

RESIDUAL STRESS IN PV MODULE

Stress in a PV module

Equipment for micro-analysis

Focusing X-ray lens for intensity boost

Equipment for micro-analysis

Focusing X-ray lens for intensity boost

2D data collection to improve measurement time

Micro-Stress analysis on metallic sample

Micro-Stress determination on 50µm strip

Single hkl analysis on 50 µm strip

Micro-stress analysis on Cu damascene structure

Micro-stress analysis on Cu damascene structure

Results on Cu damascene: 2 different orientations

Mapping & Micro-Stress analysis

NON-AMBIENT RESIDUAL STRESS

Non-Ambient analysis

DHS1100 study (Cu alloy)

Summary

X-ray diffraction is a versatile tool to determine residual stress in solar cells and PV modules

Residual stress can be determined both in layers as well as in ohmic contact structures

Stress gradients can be determined in layers (depth-resolved) and on layer surfaces (spatially resolved mapping)

On busbars and ohmic contacts, one can determine bulk stress only (by μ -XRD)

In-situ studies at non-ambient conditions are helpful to understand thermal processes