UV Fluorescence Measurement for Assessment of PV Modules ISFH, Emmerthal, 12.10.2018

Temperature effects of formation and measurement of UV fluorescence

M. Siebert, A. Morlier, M. Köntges

Institute for Solar Energy Research Hamelin ISFH

ISFH

Outline

• Effect of module temperature on fluorophores formation

• Effect of module / UV LED / camera temperature during fluorescence measurement

Outline

• Effect of module temperature on fluorophores formation

• Effect of module / UV LED / camera temperature during fluorescence measurement

Formation of fluorophores

EISFH

- Start of outdoor exposure in September 2016
- Initial fluorescence deleted in a few days
- No increase of FL in winter
- Strong increase of FL intensity in hot summer 2018
- Almost all formation of FL during summer

Formation of fluorophores

- Two equal glass/EVA/glass laminates in UV chamber
- Sample temperature T in UV chamber controlled at 27°C and 57°C
- Heat during irradiation accelerates formation of fluorophores

Fluorescence inhomogeneity

Dose: 398 kWh/m², Day 77

- Mono-Si module, never exposed to sunlight
- Initial: homogeneous fluorescence over the whole surface of the module^{1,2}
- Outdoor exposure, short circuited
- After exposure: Some cells show a more intense fluorescence than average.

Why?

FL / Operating temperature

Coll temperature hacksheet

Fluorescence measured in the lab

Circuited				Cell temperature backsneer						
	55	55	53	54	56	56	56	57	59	59
	58	73	61	67	60	63	60	68	58	57
	57	59	65	58	58	60	59	61	56	57
	58	70	58	59	59	63	64	67	59	59
	57	64	58	56	57	56	60	63	66	60
	54	65	58	58	59	59	59	60	57	55

 10°C operating temperature difference @ 780 W/m² easily observable with FL

FL / Operating temperature

50

40

20

IR-image

200

Global irradiation dose D [kWh/m²]

100

0

Fluorescence measured in the lab

After 3 weeks outdoor in summer, the operating temperature difference is detectable with UV FL

300

\rightarrow UV FL shows a history of the cell operating temperature ⁸

400

Application: cell cracks & hotspots

Electroluminescence

Fluorescence

 Critical cell crack leads to higher cell operating temperature. Cell shows higher fluorescence intensity

Electroluminescence

Fluorescence

 Electroluminescence shows 2 electrical path damages, corresponding hotspots are revealed by intense fluorescence

Outline

• Effect of module temperature on fluorophores formation

• Effect of module / UV LED / camera temperature during fluorescence measurement

- EVA samples with different FL measured at different sample temperatures
- Fluorescence intensity I_F decreases with increasing sample temperature

- EVA samples with different FL measured at different sample temperatures
- Fluorescence intensity I_F decreases with increasing sample temperature
- Linear dependence of I_F on sample temperature

• Definition of a relative fluorescence temperature coefficient δ_{25}

$$\delta_{25} = \frac{dI_F(T)}{dT} * \frac{100}{I_F(25)}$$

• Definition of a relative fluorescence temperature coefficient δ_{25}

$$\delta_{25} = \frac{dI_F(T)}{dT} * \frac{100}{I_F(25)}$$

1

 More influence of temperature on low FL intensity samples

	Setup 1	Setup 2	Setup 3			
	PV module					
Module	Climatic	Climatic	Climatic			
	chamber	chamber	chamber			
	-20°C - 80°C	0°C - 46°C	5°C - 45°C			
UV LED	Lab ambience	Temp. as	Temp. as			
	ca. 20°C	Module	Module			
Camera	Lab ambience	Isolated	Temp. as			
	ca. 20°C	(5°C - 16°C)	Module			

3 setups:

- Module under thermal cycle
- Module and UV-LED unter thermal cycle
- Module, UV-LED and camera under thermal cycle

 Measured I_F decreases with increasing module temperature in every setup

- 3 modules zones with different I_F
- Determination of δ_{25} of each zone under each setup
- UV-LED and camera temperature stabilization allow for significantly lower δ_{25}
- UV-LED efficiency is temperature sensitive: high impact on δ_{25}
- Camera temperature control has a slight effect
- UV-LED temperature is the key element to control in the field
- Module temperature should be controlled in the lab

- Almost all formation of fluorophores in PV modules during summer
- UV FL can detect warmer cells or hot spots
- UV FL shows history of cell operating temperature

- FL intensity decreases when sample temperature increases
- The fluorescence temperature coefficient δ_{25} is higher on low fluorescence intensity
- Temperature of module and UV-LED should be controlled for quantitative measurements

Acknowledgements

- This work was funded by the state of Lower Saxony and ...
- the Federal Ministry for Economic Affairs and Energy (BMWi) under grant number 0325735D (Fidelitas).

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

