Abschlussbericht
zum Forschungsvorhaben
Betrieb und messtechnische Bewertung eines neuartigen Sonnenhauskonzepts mit temperaturoptimierter Nutzung von Sonnenwärme anhand eines Experimentalgebäudes

Kurzbezeichnung: „SH-T-Opt Exp“
Förderkennzeichen: 032559
Laufzeit: 01.07.2015-30.09.2017

J. Steinweg, J. Glembin

Dezember 2017

Gefördert durch das Bundesministerium für Wirtschaft und Energie (BMWi) aufgrund eines Beschlusses des deutschen Bundestages.

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.
Projektbearbeitung

Institut für Solarenergieforschung Hameln (ISFH)
Abteilung Solarthermie
Projektleiter: Jan Steinweg
weiterer Ansprechpartner: Prof. Dr.-Ing. Oliver Kastner

Am Ohrberg 1
D-31860 Emmerthal
Tel. 05151-999-100
Fax. 05151-999-500
www.isfh.de

Mitwirkende Industriepartner

HELMA Eigenheimbau AG
Ansprechpartner: Nicolas Rudolph

Zum Meersefeld 4
D-31275 Lehrte
www.helma.de

RESOL Elektronische Regelungen GmbH
Ansprechpartner: Guido Filler

Heiskampstr. 10
D-45524 Hattingen
www.resol.de

Danksagung

Das Projekt wurde vom Bundesministerium für Wirtschaft und Energie (BMWi) aufgrund eines Beschlusses des deutschen Bundestages gefördert. Die fachliche und administrative Projektbegleitung erfolgte durch den Projektträger Jülich (PtJ), namentlich Herrn Dr. Peter Donat. Die Autoren bedanken sich bei allen Partnern, beim Projektträger und beim Fördermittelgeber für die Unterstützung ihrer Arbeiten.
Inhaltsverzeichnis

Nomenklatur .. 4

Zusammenfassung ... 6

1 Einleitung .. 8
 1.1 Motivation und Systemkonzept ... 8
 1.2 Projektziele .. 9
 1.3 Projektmanagement .. 10

2 Abgleich des Simulationsmodells ... 12
 2.1 Teilsystem Sonnenkollektor ... 13
 2.1.1 Bewertung .. 16
 2.2 Teilsystem Wärmepumpe .. 16
 2.2.1 Bewertung .. 22
 2.3 Teilsystem Erdwärmekollektor .. 23
 2.3.1 Bewertung .. 26
 2.4 Gesamtsystem ... 27
 2.4.1 Teilsystem Sonnenkollektor ... 28
 2.4.2 Teilsystem Wärmepumpe ... 30
 2.4.3 Teilsystem Erdwärmekollektor ... 32
 2.4.4 Gesamtsystem .. 33

3 Systemsimulationen .. 38
 3.1 Variation der Wetterdaten ... 38
 3.2 Variation der Wärmelast .. 41
 3.3 Variable Wertigkeit bei der Systemregelung ... 46
 3.3.1 Umsetzung im Regler .. 47
 3.3.2 Simulationsergebnisse ... 47

4 Messtechnische Analyse des Gebäudebetriebs ... 50
 4.1 Das Experimentalgebäude .. 50
 4.2 Betriebsphase I: Systemeinregelung ... 52
 4.2.1 Vergleich mit Simulationsergebnissen .. 53
 4.3 Betriebsphase I: Stresstest .. 59
 4.3.1 Beurteilung der Leistungsfähigkeit ... 63
 4.4 Betriebsphase II: Messung bei ungestörtem Betrieb .. 63
 4.4.1 Vergleich mit Simulationsergebnissen .. 65

5 Konzeptbewertung ... 68
 5.1 Technische Bewertung ... 68
 5.2 Wirtschaftliche Bewertung .. 69

6 Projektorganisation .. 73
 6.1 Veröffentlichungen und Präsentationen .. 73

Institut für Solarenergieforschung Hameln/Emmerthal und HELMA Eigenheimbau AG
6.2 Abschlussarbeiten ... 73
6.3 Projekttreffen ... 74

7 Verwertbarkeit der Ergebnisse ... 75
 7.1 Wirtschaftliche Erfolgsaussichten ... 75
 7.2 Varianten im Systemkonzept ... 76
 7.3 Wissenschaftlich-wirtschaftliche Anschlussfähigkeit aus Sicht des ISFH ... 76
 7.4 Anschlussfähigkeit aus Sicht der HELMA Eigenheimbau AG 77
 7.5 Schutzrechtsanmeldungen ... 77

8 Literatur ... 78

9 Anhang ... 80
 9.1 Tagungsbeiträge .. 80

Nomenklatur

Lateinische Symbole

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_p</td>
<td>Spez. Wärmekapazität</td>
<td>Wh/kgK</td>
</tr>
<tr>
<td>f_{sol}</td>
<td>Solare Deckung</td>
<td>-</td>
</tr>
<tr>
<td>P_{el}</td>
<td>Elektrische Leistung</td>
<td>W</td>
</tr>
<tr>
<td>Q</td>
<td>Wärmemenge</td>
<td>Wh</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>Massenstrom</td>
<td>kg/h</td>
</tr>
<tr>
<td>W_{el}</td>
<td>Elektrische Arbeit</td>
<td>Wh</td>
</tr>
</tbody>
</table>

Griechische Symbole

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>Leistungszahl</td>
<td>-</td>
</tr>
<tr>
<td>$\Delta \vartheta$</td>
<td>Temperaturdifferenz</td>
<td>K</td>
</tr>
<tr>
<td>ϑ</td>
<td>Temperatur</td>
<td>°C</td>
</tr>
</tbody>
</table>

Abkürzungen und Indices

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Arbeitspaket</td>
</tr>
<tr>
<td>AZ</td>
<td>Arbeitszahl</td>
</tr>
<tr>
<td>BTA</td>
<td>Bauteilaktivierung</td>
</tr>
</tbody>
</table>
Coll Kollektor
EG Erdgeschoss
EWK Erdwärmekollektor
FKZ Förderkennzeichen
in Eintritt
Koll Sonnenkollektor
Kond Kondensator
Max Maximal
Mess Messung
NH Nachheizbereich
OG Obergeschoss
out Austritt
Rad Radiator
Ref Referenzsystem
SH Sonnenhaus
SH1 Sonnenhaus mit Standard Systemtechnik
SH2 Sonnenhaus mit neuer Systemtechnik
Sim Simulation
VDI Verein Deutscher Ingenieure
Verd Verdampfer
W Wertigkeit
WP Wärmepumpe
WW Warmwasser
Zusammenfassung

auf 24 °C und bei der Verdopplung des TWW Bedarfs (Standardannahme ist ein Vierpersonenhaushalt). Beides erhöht den Gesamtstrombedarf und mindert die solare Deckung, bedeutet jedoch nicht eine kritische Überlast des Systems.

Eine darauf folgende Analyse der über zwei Jahre aufgenommenen Messdaten (April 2015 bis März 2017) zeigt, dass das System sich wie erwartet verhält und die energetischen Anforderungen erfüllt. Die solare Deckung liegt im ersten Messjahr mit 52 % knapp über und im zweiten Messjahr mit 47 % knapp unter dem Auslegungswert von 50 %. Die Schwankungen lassen sich mit Nutzerverhalten und Witterungseinflüssen erklären. Sowohl die Simulationsstudie als auch die Messergebnisse zeigen, dass die Systemleistung maßgeblich durch die im Winter und in den Übergangszeiten verfügbare Solarstrahlung beeinflusst wird, die vornehmlich durch die BTA genutzt wird. Im ersten Messjahr trägt die solare BTA 50 % des Raumheizbedarfs bei, im zweiten Messjahr nur etwa 30 %. Eine geringe Schichtungseffizienz und ein hoher Wärmeverlustkoeffizient des Pufferspeichers bieten zudem Verbeserungspotential bei der Systemeffizienz und der JAZ der WP, die bei etwa 3,4 bis 3,5 liegt. Der Gesamtstrombedarf liegt trotz allem zwischen 7 kWh/²a und 8 kWh/m²a und damit auf einem sehr geringen Niveau, dass zudem auch primärenergetisch die Erfüllung der Sonnenhauskriterien sichert (Primärenergiebedarf unter 15 kWh/m²a).

Sowohl die technischen als auch die wirtschaftlichen Vorteile des neuen Sonnenhauskonzepts sprechen aus unserer Sicht für die weitere Verfolgung des Konzeptgedankens, der sich im Übrigen auch für die Anwendung im Mehrfamilienhausbereich, in der energetischen Bestandsmodernisierung oder in Nichtwohngebäuden eignet.
1 Einleitung

1.1 Motivation und Systemkonzept

solaren Erträge im Erdreich ermöglichen eine knappe Dimensionierung der Quelle und können so die Systemkosten reduzieren.

Abbildung 1.1 zeigt ein Energieflussschema des Konzepts mit einem Erdwärmekollektor als Erdreichquelle der Wärmepumpe.

Abbildung 1.1: Schematische Darstellung der Wärmeströme im neuen Sonnenhauskonzept

1.2 Projektziele

Das Gesamtziel des Projekts ist die Entwicklung und praktische Bewertung des unter Abschnitt 1.1 vorgestellten neuen Systemkonzepts für Sonnenhäuser anhand eines Experimentalgebäudes. Dazu wurde das Konzept in einem vorangegangenen Projekt im Rahmen von Simulationsstudien zunächst konkretisiert, um es dann in einem geeigneten Gebäude prototypisch zu realisieren und messtechnisch zu untersuchen.

Ein erweiterter Vergleich des Experimentalgebäudebetriebs mit den zuvor getroffenen Vorhersagen auf Basis der Simulationsstudien zur Einschätzung der Systemleistung im Grenzbereich (höhere Heiz- oder Warmwasserlasten, kleinere Wärmequellen oder –senken, Extremwetterperioden) oder an anderen Standorten war auf Basis der knappen Betriebszeit nicht möglich. Deshalb wird durch die im folgenden beschriebene Fortführung der messtechnischen Untersuchungen über zwei Messjahre ein qualitätssichernder Projektabschluss erreicht, auf dessen Basis eine Überführung des Systemkonzepts in ein vermarktungsfähiges Produkt durch die HELMA Eigenheimbau AG erfolgreich umgesetzt werden kann. Folglich hat das hier beschriebene Vorhaben die folgenden zentralen Zielsetzungen:

- Durchführung eines Stresstests im Experimentalgebäude durch Erhöhung des Wärmebedarfs bei gleichzeitiger Verkleinerung der Wärmequelle (EWK)
- Messung des ungestörten und unverfälschten Gebäudebetriebs inklusive wesentlicher Energieströme über ein vollständiges Jahr nach Trocknung der Bausubstanz, Abschluss der Versuche und Eingewöhnung der Bewohner
- Bestimmung und Auswertung charakteristischer Auswertegrößen wie Kollektorergebnisse, solarer Deckung, Endenergieverbrauch und Jahresarbeitszahl der Wärmepumpe und Vergleich zu den Systemsimulationen
- Sicherstellung der Konzept- und Gebäudefunktion sowie deren Robustheit bei verschiedenen realitätsnahen Betriebsbedingungen
- Erkennnistransfer zur Identifizierung weiterer Möglichkeiten der Kostenermäßigung, belastbare Aussagefähigkeit zu Kosten eines zukünftigen Serienprodukts

1.3 Projektmanagement

ISFH organisiert und begleitet. Außerdem sind die organisatorischen Maßnahmen zur Erreichung der Meilensteine und Ziele in den einzelnen Arbeitspaketen und deren Koordination sowie die Vorbereitung und Durchführung der Projekttreffen zu nennen. Der Projektfortgang und die Projektergebnisse sind während der Projektlaufzeit in Form von Zwischenberichten und der Öffentlichkeit zugänglichen Publikationen (siehe Kapitel 6.1) dokumentiert worden.

Arbeitspaket Inhalt und Verweis auf Kapitel im Bericht

AP 1	Projektmanagement und Austausch	→ Abschnitt 1.3 und 6
AP 2	Betrieb des Gebäudes, Betriebsphase I	→ Abschnitt 4.2
AP 3	Analyse der Betriebsphase I und begleitende Simulationsstudie	→ Abschnitte 2, 3 und 4.2.1
AP 4	Betrieb des Gebäudes, Betriebsphase II	→ Abschnitt 4.4
AP 5	Analyse des Gebäudebetriebs, Betriebsphase II	→ Abschnitte 4.4 und 4.4.1
AP 6	Kosten und Umsetzung	→ Abschnitt 5
2 Abgleich des Simulationsmodells

Zunächst wird ein detaillierter Abgleich der drei wesentlichen Komponenten bzw. der Teilsysteme durchgeführt: Sonnenkollektor (Abschnitt 2.1), Wärmepumpe (2.2) und Erdwärme kollektor (2.3). Hierzu werden der Simulation im Wesentlichen die Messwerte einer repräsentativen Messperiode für Eintrittstemperaturen und Massenströme vorgegeben. Der Vergleich zwischen Simulation und Messung erfolgt für das jeweilige Teilsystem anhand der Austrittstemperaturen und der sich dadurch ergebenen thermischen bzw. elektrischen Leistungen und Energiemengen.

Anschließend wird in Abschnitt 2.4 ein Vergleich der Mess- und Simulationsdaten für das gesamte System mit allen Systemkomponenten durchgeführt. Der Simulation werden dabei aus einer längeren Messperiode ausschließlich meteorologische und die Wärmelast charakterisierende Daten vorgegeben.

Abbildung 2.1 zeigt ein Schema des Gesamtsystems, in dem die drei im Detail untersuchten Teilsysteme markiert sind. Die markierten Bereiche stellen die Bilanzgrenzen der Teilsysteme dar und umfassen die für den Abgleich des jeweiligen Teilsystems verwendeten Messsensoren.
Abb. 2.1: Schema des Wärmeversorgungssystems im Experimentalgebäude mit den eingesetzten Messsensoren, markiert sind die drei Teilkomponentensysteme Sonnenkollektor (Koll), Wärmepumpe (WP) und Erdwärmekollektor (EWK)

Der Bilanzraum des Sonnenkollektorkreises wird begrenzt durch die Temperaturfühler 1.1 und 1.2 sowie dem Massenstromsensor 1.3. Für den Erdwärmekollektorkreis werden die Temperatur-Fühler 5.1 und 5.2 sowie der MassenstromSensor 5.3 verwendet. Das Teilsystem der Wärmepumpe wird auf der Kondensatorseite durch die Fühler 6.1, 6.2 und 6.3 und auf der Verdampferseite durch die Fühler 5.2, 5.3 und 5.7 erfasst. Außerdem wird die elektrische Leistungsaufnahme von Sensor 6.4 verwendet.

2.1 Teilsystem Sonnenkollektor

Das Teilsystem (siehe Markierung im Hydraulikschema in Abbildung 2.1) umfasst nicht nur das Kollektorfeld, sondern auch den Teil der Kollektoranschlussleitungen bis zu den Temperatursensoren im Heizraum. Neben meteorologischen Daten stellen vor allem die Temperatur und der Massenstrom am Eintritt in das Teilsystem die wesentlichen Eingangsgrößen des Simulationsmodells dar. Zudem werden die Temperaturen in den einzelnen Zonen des Gebäudes als Randbedingungen für die durch das gesamte Gebäude verlegten Anschlussleitungen verwendet. Der Vergleich zwischen Simulation und Messung erfolgt mithilfe der Austrittstemperatur aus dem Kollektorkreis und dem daraus berechneten Kollektorertrag an den einzelnen Tagen.

Die Abbildung des Kollektorkreises und die Parametrierung der Komponenten sind mit folgenden Unsicherheiten verbunden:

Institut für Solarenergieforschung Hameln/Emmerthal und HELMA Eigenheimbau AG
- Die Einstrahlung auf die Kollektorebene wird als Gesamtstrahlung gemessen. Der im Modell benötigte Anteil an Diffus-/Direktstrahlung muss auf Grundlage der Gesamtstrahlungswerte abgeschätzt werden.
- Die Führung der Kollektoranschlussleitungen und damit deren genaue Länge ist nicht im Detail nachgemessen worden und wird auf Basis der Aussagen des Gebäudeplaners angenommen.
- Die Kollektorkennwerte werden einem Prüfbericht entnommen, der für einen Kollektor gleichen Typs aber mit doppelt so großer Aperturfläche wie im Experimentalhaus ausgestellt wurde. Es ist nicht auszuschließen, dass die verbauten Kollektoren andere Kennwerte aufweisen.

Abbildung 2.2 zeigt die Ergebnisse für den 04.07.2015, an dem mit 6,4 kWh/m²a die zweithöchste Einstrahlung innerhalb des untersuchten Zeitraumes auftrat.

![Abbildung 2.2: Mess- und Simulationsergebnisse für den 04.07.2015 im Teilsystem des Sonnenkollektors: gemessene und simulierte Austrittstemperatur, Einstrahlung auf die Kollektorfläche, Massenstrom (dividiert durch 10)](image)

Der Kollektor wird zunächst in drei kurzen Takten betrieben, der dadurch hervorgerufene sehr dynamische Temperaturverlauf wird vom Modell nur teilweise wiederge-
ben. Bei längerem Kollektorbetrieb ergibt sich dagegen eine deutlich bessere Übereinstimmung zwischen Simulation und Messung. Allerdings liegt in diesem Zeitraum die simulierte Kollektoraustrittstemperatur um 0,5 K bis 1 K unter dem gemessenen Wert. Dies führt zu einer Abweichung am gesamten Tag von -4 %.

Der Vergleich von Simulations- und Messdaten für den gesamten Zeitraum der Messperiode erfolgt mithilfe der täglichen Kollektorerträge \(\frac{Q_{\text{CPLMess}}}{Q_{\text{CPLSim}}} \) als Integral der Kollektorleistungen.

\[
Q_{\text{CPLMess}} = \int \dot{m} \cdot c_p \cdot \left(\theta_{\text{CPLout,Mess}} - \theta_{\text{CPLin,Mess}} \right) \quad 24h
\]
\[
Q_{\text{CPLSim}} = \int \dot{m} \cdot c_p \cdot \left(\theta_{\text{CPLout,Sim}} - \theta_{\text{CPLin,Sim}} \right) \quad 24h
\]

Der Kollektorertrag wird berechnet mit der gemessenen bzw. der simulierten Kollektoraustrittstemperatur \(\frac{\theta_{\text{CPLout,Mess}}}{\theta_{\text{CPLout,Sim}}} \). Die Eintrittstemperatur \(\theta_{\text{CPLin,Mess}} \), der Massenstrom \(\dot{m} \) sowie die mit \(c_p = 1,03 \text{ Wh/kgK} \) (Stoffwert für 50 °C) als konstant angenommene spezifische Wärmekapazität ist in Messung und Simulation identisch. Abbildung 2.3 zeigt die simulierten und gemessenen Kollektorerträge für den Zeitraum 14.5. bis 24.7.

Abbildung 2.3: Gemessener und simulierter Kollektorertrag für den Zeitraum 14.5. bis 24.7.

Der simulierte Kollektorertrag ist an nahezu jedem Tag unter dem jeweiligen Messwert. Im Maximum liegt der simulierte Wert um 36 % unterhalb des Messwertes, im gesamten Zeitraum liegt die Abweichung bei 9 %. Die höchsten relativen Abweichungen treten an Tagen mit geringen Kollektorerträgen auf, bei höheren Erträgen ergibt sich eine geringere Abweichung. Dies deckt sich mit dem Ergebnis aus Abbildung 2.2, das für den 04.07.2015 einerseits eine gute Übereinstimmung zwischen Messung und Simulation im länger andauernden Betrieb zeigte. Im schnell wechselnden, taktenden Betrieb mit eher geringer Kollektorleistung ergeben sich dagegen weitaus höhere Abweichungen.
2.1.1 Bewertung

2.2 Teilsystem Wärmepumpe

Abbildung 2.4 zeigt die Ergebnisse auf der Verdampferseite der Wärmepumpe für den 03.04.2015.
Abbildung 2.4: Mess- und Simulationsergebnisse für den 03.04.2015 im Teilsystem der Wärmepumpe: gemessene Verdampfeintritts- sowie gemessene und simulierte Verdampferaustrittstemperatur, Massenstrom- und Wärme pumpensignal

Der Ausschnitt aus dem Diagramm zeigt:

- Die Regelung der Wärmepumpe startet vor dem Einschalten des Kompressors die Umwälzpumpe im Verdampferkreis. In der Messung wird in der Folge wärmeres Wasser zum Sensor der Austrittstemperatur gefördert, dies führt zu einer Temperaturspitze von bis zu 4 K. Am Eintritt tritt dagegen nur beim ersten gezeigten Wärmepumpentakt (davor 45 min Stillstand) eine kleine Temperaturspitze auf, d.h. zwischen beiden Temperatursensoren muss es im Stillstand zu einer entsprechenden Erwärmung kommen.

- Die Simulation folgt nach dem Einschalten der Eintrittstemperatur, d.h. hier zeigt sich nur beim ersten Wärmepumpentakt eine kleine Temperaturspitze.

- Nach der Temperaturspitze beim Einschalten des Massenstromes zeigt sich nur eine geringe Abweichung zwischen Messung und Simulation.

Abbildung 2.5 vergleicht den aus den jeweiligen Austrittstemperaturen berechneten Wärmeeleistungen für Messung und Simulation.
Abbildung 2.5: Mess- und Simulationsergebnisse für den 03.04.2015 im Teilsystem der Wärmepumpe: Wärmeleistung am Verdampfer, Massen- und Wärmepumpensignal

Der Vergleich der Wärmeleistungen zeigt, dass hohe Abweichungen vor allem durch die gemessene Temperatur spitzen nach Zuschalten des Massenstromes vor dem Betrieb der Wärmepumpe auftreten. Im WP-Betrieb selbst sind die Abweichungen gering. Insgesamt wird am 03.04.2015 eine Wärmeabgabe an die WP von 21,1 kWh gemessen, die Simulation weist hierzu mit 23,1 kWh eine Abweichung von ca. 9 % auf.

Für den gleichen Ausschnitt zeigt Abbildung 2.6 die Ergebnisse auf der Kondensatorseite der Wärmepumpe.
Für die Kondensatorseite ergibt sich:

- Auch die Umwälzpumpe auf der Kondensatorseite wird vor dem Betrieb der Wärmepumpe gestartet. Nach längerem Stillstand (beim ersten WP-Takt) zeigt sich in der Messung eine negative Temperaturspitze am Austritt. Die Simulation folgt der Eintrittstemperatur, die keine Temperaturspitze aufweist.
- Während des WP-Betriebes liegt die simulierte Austrittstemperatur um bis zu 1 K über der Messung. Nach dem Ausschalten sinkt die gemessene Austrittstemperatur deutlich schneller ab als in der Simulation.

Abbildung 2.7 vergleicht die aus den jeweiligen Austrittstemperaturen berechneten Wärmeleistungen für Messung und Simulation.

Die gemessene Wärmeleistung zeigt aufgrund der Temperaturspitze am Austritt eine negative Leistungsspitze nach dem ersten Start der Wärmepumpe. Während des Betriebes treten in den Messungen stärkere Schwankungen auf als in der Simulation. Dies zeigt sich z.B. nach Änderung der Eintrittstemperatur um etwa 11:40 (siehe Bildung 2.6), die zu einer Leistungsspitze in der Messung führt. Die Simulation folgt deutlich schneller der Eintrittstemperatur (1 m Rohrleitung) und verläuft mit weniger Schwankungen.

Für den gleichen Ausschnitt wie zuvor zeigt Abbildung 2.8 die elektrische Leistung der Wärmepumpe sowie die Leistungszahl ε, die hier dem Verhältnis aus kondensatorseitiger Wärmeleistung zur elektrischen Leistungsaufnahme der WP entspricht.
Abschlussbericht Projekt SH-T-Opt Exp

Abbildung 2.8: Mess- und Simulationsergebnisse für den 03.04.2015 im Teilsystem der Wärmepumpe: Elektrische Leistungsaufnahme und COP der Wärmepumpe

Nach der detaillierten Analyse des 03.04.2015 wird im Folgenden der gesamte Zeitraum untersucht. Hierzu werden die täglichen Wärmemengen am Kondensator und Verdampfer als Integral der Wärmeleistung berechnet. Im Beispiel des Verdampfers ist dies:

\[
Q_{\text{VerdMess}} = \int \dot{m} \cdot c_p \cdot (\vartheta_{\text{VerdoutMess}} - \vartheta_{\text{VerdInMess}}) \\
Q_{\text{VerdSim}} = \int \dot{m} \cdot c_p \cdot (\vartheta_{\text{VerdoutSim}} - \vartheta_{\text{VerdInMess}})
\]

(2)

Die Wärmemenge wird berechnet mit der gemessenen bzw. der simulierten Verdampferaustrittstemperatur \((\vartheta_{\text{VerdoutMess}} / \vartheta_{\text{VerdoutSim}})\). Die Eintrittstemperatur \(\vartheta_{\text{VerdInMess}}\) der Massenstrom \(\dot{m}\) sowie die als konstant angenommene spezifische Wärmekapazität (Verdampferseitig \(c_p = 1\) Wh/kgK bzw. 1,161 Wh/kgK auf der Kondensatorseite) ist in Messung und Simulation identisch. Als konstante Werte für die Wärmekapazität werden auf der Verdampferseite 1 Wh/kgK (entspricht Fluidtemperatur von 5 °C) und auf der Kondensatorseite 1,161 Wh/kgK (50 °C) angenommen.

Abbildung 2.9 zeigt die simulierten und gemessenen Wärmemengen auf Verdampfer- und Kondensatorseite für den Zeitraum 30.03. bis 05.04.
Sowohl auf der Verdampfer- als auch auf der Kondensatorseite treten in der Simulation höhere Wärmemengen auf. Die Abweichung liegt zwischen 8 % und 15 % auf der Verdampferseite und zwischen 4,5 % und 6,5 % auf der Kondensatorseite. Im letzteren Fall ist die Unsicherheit in den Messwerten deutlich geringer, da hier eine kalibriertes Temperatursensorpaar in der Auswertung genutzt wird, auf der Verdampferseite werden dagegen zwei einzeln kalibrierte Sensoren verwendet. In der Analyse in Abbildung 2.4 hat sich gezeigt, dass in der Messung auf der Verdampferseite nach Start des Massenstromes vor Betrieb der Wärmepumpe Temperaturspitzen auftreten, die nicht von der Simulation wiedergegeben werden. Werden nur die Wärmemengen während des Betriebes der Wärmepumpe berücksichtigt, reduziert sich die Abweichung auf der Verdampferseite auf +4 %.

Der Vergleich der elektrischen Energie in Simulation und Messung erfolgt mit der tägliсhen Aufnahme elektrischer Energie \(W_{el} \) als Integral der elektrischen Leistungen \(P_{el} \).

\[
W_{el,Mess} = \int_{24h} P_{el,Mess} \, dt, \quad W_{el,Sim} = \int_{24h} P_{el,Sim} \, dt
\]

Die Performance der Wärmepumpe wird ermittelt mithilfe der Arbeitszahlen \(AZ \), dem Verhältnis aus Kondensatorwärme \(Q_{Kond} \) und der elektrischen Energiemenge.

\[
AZ_{Mess} = \frac{Q_{Kond,Mess}}{W_{el,Mess}}, \quad AZ_{Sim} = \frac{Q_{Kond,Sim}}{W_{el,Sim}}
\]

Abbildung 2.10 zeigt die simulierten und gemessenen elektrischen Kenngrößen für den Zeitraum 30.03. bis 05.04.
Abbildung 2.10: Gemessene und simulierte Strommengen und Arbeitszahlen der Wärmepumpe für den Zeitraum 30.03. bis 05.04. mit Messunsicherheiten

Die Abweichungen in der Strommenge liegen bei etwa 4 % und sind daher geringer als die Kondensatorwärmemengen. Dies führt dazu, dass die simulierte Arbeitszahl geringfügig über den gemessenen Ergebnissen liegt.

2.2.1 Bewertung

Das Modell der Wärmepumpe wurde anhand stationärer Betriebspunkte nach Herstellerangaben parametriert. Im stationären Betrieb zeigt sich vor allem auf der Verdampferseite eine hohe Übereinstimmung in der Austrittstemperatur. Kondensatorseitig ergeben sich in der Simulation positive Abweichungen. Da auch die elektrische Leistungsaufnahme höher simuliert wird, ergibt sich aber insgesamt eine geringe Abweichung in den Leistungs- und Arbeitszahlen des Wärmepumpenkreises.

Da keine Informationen zum dynamischen Verhalten der Wärmepumpe vorliegen, wurden die Aufheiz- und Abkühlkonstante im Modell auf die typische Werte gesetzt, die am ISFH für eine Wärmepumpe der gleichen Leistungsklasse gemessen wurden. Der dynamische Temperaturverlauf nach Start der Wärmepumpe kann mit diesen Parameterwerten gut wiedergegeben werden.

Insgesamt ergibt sich für den Zeitraum 30.03. bis 05.04.2015 Abweichungen von 10 % auf der Verdampferseite, 5 % auf der Kondensatorseite und 4 % in der elektr-
Abschlussbericht Projekt SH-T-Opt Exp

schen Energiemenge. Wird nur der Zeitraum mit Wärmepumpenbetrieb betrachtet und damit vor allem die Temperaturspitzen vor WP-Start in der Bewertung nicht berücksichtigt, sinkt die Abweichung auf der Verdampferseite auf 4\%. Insgesamt ist die Abbildung dieses Teilsystems als hinreichend genau anzunehmen, da sowohl die Länge und Führung der Rohrleitungen als auch lokale Erwärmungen keine signifikante Rolle bei der Bewertung des Systemkonzepts spielen.

2.3 Teilsystem Erdwärmekollektor

Das Teilsystem umfasst das Erdkollektorfeld und die Anschlussleitungen bis zu den Temperatursensoren im Heizraum (siehe Markierung im Schema in Abbildung 2.1). Neben der Temperatur und dem Massenstrom am Eintritt fungieren die Außenlufttemperatur und die solare Einstrahlung als wesentliche Eingangsgrößen des Simulationsmodells. Als Randbedingung für die Rohrleitungen im Haus wird die Temperatur im Heizraum verwendet. Der Vergleich zwischen Simulation und Messung erfolgt mithilfe der Austrittstemperatur aus dem Erdkollektorkreis und der daraus berechneten Wärmemenge. Für den Vergleich von Simulations- und Messergebnissen wird wie in Abschnitt Abbildung 2.2 der Zeitraum vom 30.03. bis 05.04. verwendet.

Der Vergleich von Simulations- und Messdaten für den gesamten Zeitraum erfolgt mit den täglichen Wärmemengen als Integral der Wärmeleistung.

\[
Q_{EWK,Mess} = \int_{24h}^{} \dot{m} \cdot c_p \cdot (\vartheta_{EWK,out,Mess} - \vartheta_{EWK,in,Mess}) \cdot h_{24} \\
Q_{EWK,Sim} = \int_{24h}^{} \dot{m} \cdot c_p \cdot (\vartheta_{EWK,out,Sim} - \vartheta_{EWK,in,Mess}) \cdot h_{24}
\]

(5)

Die Wärmemenge wird berechnet mit der gemessenen bzw. der simulierten Verdampferaustelltstemperatur \((\vartheta_{EWK,out,Mess} / \vartheta_{EWK,out,Sim})\). Die Eintrittstemperatur \(\vartheta_{EWK,in,Mess}\), der Massenstrom \(\dot{m}\) sowie die als konstant angenommene spezifische Wärmekapazität \((c_p = 1 \text{ Wh/kgK})\) ist in Messung und Simulation identisch.

Mangels geeigneter Modelle ist das Erdkollektorfeld bis zum Sommer 2015 mit einem Simulationsmodell für Erdwärmesonden abgebildet worden. Abbildung 2.3 zeigt die simulierten und gemessenen täglichen Wärmemengen für den Zeitraum 30.3. bis 5.4. unter Einsatz des Erdwärmesondenmodells.
Abbildung 2.11: Gemessene und simulierte Wärmemenge im Erdkreis für den Zeitraum 30.3 bis 5.4., Simulation mit Erdwärmesondenmodell

Abbildung 2.13 zeigt die sich ergebenden Wärmemengen für den gesamten Zeitraum vom 30.03. bis 05.04. bei Verwendung des Modells des Erdwärmelekktors.
Die simulierten Wärmemengen liegen für die Tage 30.03. bis 02.04. unter den Messwerten während in der Folge höhere Werte simuliert werden. Die Abweichung liegen zwischen -13 % am 31.03. und +4 % am 04.04. Insgesamt ist die Abweichung mit -4 % bzw. 15 % (aufsummiert) weitaus geringer als bei Verwendung des Modells für Erdwärmesonden.

2.3.1 Bewertung

Bei Verwendung des Erdwärmesondenmodells zeigt sich eine geringe Übereinstimmung zwischen Simulation und Messung. Der Temperaturverlauf wird weder im dynamischen noch im quasi-stationären Betrieb gut wiedergegeben. Insgesamt liegt die Abweichung in der Wärmemenge bei 18 %. Da die Abweichungen aber zeitweise positiv und negativ sind, heben diese sich teilweise auf. Wird die Abweichung in jedem einzelnen Zeitschritt aufsummiert, ergibt sich ein noch größerer Unterschied von 24 %. Die Abbildung des Erdkollektorfeldes mit einem Modell für Erdwärmesonden führt sowohl zu Unterschieden in der Simulation selbst, erschwert aber auch eine vernünftige Parametrierung des Modells (Sondenlänge, Dimensionen U-Rohr,…).

Eine weitaus bessere Übereinstimmung ergibt sich, wenn das Erdwärmekollektormodell nach (Hirsch 2016) genutzt wird. Die Abweichung sinkt auf -4 % bzw. 15 % als Summenwert aller Abweichungen. Diese Übereinstimmung ist als sehr gut zu bewerten, da einige Unsicherheiten bei der Bereitstellung und Ermittlung von Parametern und Eingangsgrößen bestehen:

- Das Temperaturprofil zu Beginn der Simulation wird auf Basis der Meteoonorm-Wetterdaten für Zürich erzeugt. Zwar zeigt sich in Tiefe des Erdwärmekollektors (1,2 m) eine gute Übereinstimmung zu den Messdaten. Eine Überprüfung des restlichen vertikalen Temperaturprofils ist aber aufgrund fehlender Messdaten nicht möglich.
- Die meteorologischen Eingangsgrößen liegen teilweise nicht als Messwert vor (Windgeschwindigkeit, Himmelstemperatur) und müssen abgeschätzt werden. Hierbei wird ein konstanter Wert für Wind (1 m/s) angenommen sowie die Himmelstemperatur pauschal auf 7 K unterhalb der gemessenen Umgebungstemperatur gesetzt. Des Weiteren muss die Globalstrahlung aus der gemessenen Einstrahlung auf die Sonnenkollektorfläche mit 45 ° Neigung berechnet werden. Da keine Informationen über den Direktstrahlungsanteil vorliegen, kann die Umrechnung nur mit entsprechender Unsicherheit vorgenommen werden.

Die oben angeführten Unsicherheiten beim Vergleich zwischen Simulation und Messung betreffen vor allem Gegebenheiten direkt an der Experimentalanlage. Für die Systemsimulationen in Abschnitt 3 werden dagegen meteorologische Daten für Windgeschwindigkeit, Himmelstemperatur und Globalstrahlung verwendet. Ebenso kann das Temperaturprofil im Erdreich auf Grundlage der Wetterdaten in einer Vor simulation über ein Jahr ermittelt werden. Es ist zu erwarten, dass unter diesen Vo-
raussetzungen geringere Abweichungen als hier ermittelt auftreten, so dass sich insgesamt das Modell Erdwärme- kollektors gut für diese Simulationen eignet.

2.4 Gesamtsystem

Zum Vergleich des gesamten Simulationsmodells werden alle enthaltenen Komponenten entsprechend der Experimentalanlage parametriert. Neben den in den vorherigen Abschnitten beschriebenen Komponenten werden die folgenden Subsysteme angepasst:

- Gebäude
- Bauteilaktivierung
- Raumheizung
- Frischwasserstation
- Wärmespeicher
- Regelung

Wesentlich für die Parametrierung der Frischwasserstation ist die Angabe des Wärmeübergangskoeffizienten bzw. dessen Abhängigkeit vom primär- und/oder sekundärseitigen Massenstrom. Aus dem Datenblatt des Herstellers sowie aus den Messdaten lassen sich diese Angaben nicht ermitteln. Für die Festlegung der Parameter wird daher auf Messungen des ISFH für eine Frischwasserstation der gleichen Leistungsklasse zurückgegriffen.

In der Anlage sind eine Vielzahl weiterer hydraulischer Bauteile (z.B. Umschaltventile, Rückflussverhinderer, Sicherheitsventile) verbaut und es existieren zwischen allen Komponenten entsprechende Anschlussleitungen. Diese Bauteile führen vor allem zu zusätzlichen Wärmeverlusten innerhalb des Heizraumes und beeinflussen den
Temperaturverlauf beim Ein- und Ausschalten. Der Anteil am Gesamtwärmeumsatz ist allerdings als gering einzuschätzen, da alle Rohrleitungen und fast alle Bauteile gedämmt sind. In der Simulation werden diese zusätzlichen Komponenten nicht berücksichtigt, da sie das Modell deutlich verkomplizieren ohne jedoch einen signifikanten Einfluss auf die Ergebnisse haben.

Vor dem Vergleich der Ergebnisse für das gesamte System werden in den Abschnitten 2.4.1 bis 2.4.3 nochmals die einzelnen Teilsysteme von Sonnenkollektor, Wärmepumpe und Erdwärme kollektor betrachtet. Dabei werden der Simulation wie in den Abschnitten 2.1 bis 2.3 die Eintrittsgrößen (Eintrittstemperatur, Massenstrom) direkt aus den Messdaten vorgegeben und die Ergebnisse für Austrittstemperaturen und Wärmemengen mit der Messung verglichen. Für die Simulation des Gesamtsystems in Abschnitt 2.4.4 werden dagegen ausschließlich meteorologische sowie die Wärmelast kennzeichnende Eingangsdaten verwendet.

2.4.1 Teilsystem Sonnenkollektor

Während an mehreren Tagen die solare Einstrahlung zu gering für einen Betrieb der Sonnenkollektoren war, tritt an etwa der Hälfte der Tage im betrachteten Zeitraum ein Solarertrag auf. An diesen Tagen weist die Simulation in fast allen Fällen deutlich niedrigere Werte auf, so dass insgesamt im Zeitraum eine Abweichung von -20% auftritt. In Abbildung 2.15 werden für den 19.12.2015 die simulierte und gemessene Kollektoraustrittstemperatur gegenübergestellt, ein Tag mit sehr hoher Abweichung zwischen Simulation und Messung (-27%).

Abbildung 2.15: Mess- und Simulationsergebnisse für den 19.12.2015: gemessene und simulierte Austrittstemperatur, Einstrahlung auf die Kollektorfläche, Massenstrom (dividiert durch 10)

2.4.2 Teilsystem Wärmepumpe

Die Ergebnisse aus Simulation und Messungen werden für den Zeitraum 16.12.2015 bis 31.01.2016 für das Teilsystem der Wärmepumpe verglichen. Systemgrenzen,
Eingangsgrößen und Parameter entsprechen den Angaben in Abschnitt 2.2. Abbildung 2.17 zeigt die simulierten und gemessenen Wärmemengen der Wärmepumpe.

Die Simulation berechnet an jedem Tag höhere Wärmemengen sowohl am Verdampfer als auch am Kondensator. Die Detailanalyse der auftretenden Temperaturen in 2.2 hat gezeigt, dass in der Messung nach Start der Umwälzpumpe vor dem Betrieb der WP negative Temperaturen am Austritt des Verdampfers auftreten. Es ist wahrscheinlich, dass dies durch kapazitive Effekte im Verdampfer hervorgerufen wird. Werden im Zeitraum 16.12. bis 31.01. nur die Wärmemenge bei eingeschalteter Wärmepumpe berücksichtigt, reduziert sich die Abweichung von 2,9 % auf 0,9 %. Mit insgesamt 5,8 % ist die Abweichung der Wärmemenge am Kondensator höher als am Verdampfer und bleibt auch unter alleiniger Berücksichtigung der Zeiten mit eingeschaltetem Kompressor gleich hoch. Die Ergebnisse für elektrische Energie und Arbeitszahlen zeigt Abbildung 2.18.
Wie bei den Wärmemengen zeigt die Simulation leicht erhöhte elektrische Energiemengen, insgesamt liegt die Abweichung bei 4 %. Die Arbeitszahl stellt das Verhältnis aus kondensatorseitiger Wärmemenge zur elektrischen Energie dar, die beide in der Simulation eine positive Abweichung aufweisen und sich somit in der Arbeitszahl teilweise aufheben. Da aber die Abweichung im elektrischen Energieverbrauch etwas geringer ist, kommt es in der Simulation zu einer leicht höheren Arbeitszahl von 0,07.

2.4.3 Teilsystem Erdwärmekollektor

Wesentlich für die Simulation des Erdwärmekollektors ist die Vorgabe der Erdreichtemperaturen zu Beginn der Simulation. Diese werden im Rahmen einer Vorsimulation ermittelt. Als Eingangsgrößen werden dabei die gemessene Einstrahlung (umgerechnet auf die Horizontale) sowie die Umgebungstemperatur für den Zeitraum 19.03.2015 bis 31.10.2015 verwendet. Bei Tagen mit vollständigem und teilweisen Ausfalls der Messtechnik (insgesamt 10 Tage) wurden diese durch Messtage vor bzw. nach dieser Periode ersetzt. Zur Bewertung der Vorsimulation liegen aus der Messung lediglich Daten für die Erdreichstemperatur in 1,2 m Tiefe vor. Diese liegt am 01.11.2015 mit 10,2 °C leicht über den Wert der Vorsimulation mit 9,8 °C. Da keine weiteren Erdreich Temperaturensmessungen vorhanden sind, ist es nicht möglich, die Übereinstimmung des restlichen Temperaturprofils zu ermitteln.
Abbildung 2.19 zeigt die simulierte und gemessenen Wärmemengen des Erdwärme-
kollektors.

\[\text{Abbildung 2.19: Gemessene und simulierte Wärmemenge im Erdreichkreis bei Simulation mit Erdwärme-}
\text{kollektormodell für den Zeitraum 16.12. bis 31.01.}\]

An jedem Tag im betrachteten Zeitraum ist zeitweise die Wärmepumpe und damit
der Erdwärme-
kollektor in Betrieb, der höchste Wärmeentzug findet in der Zeit zwi-
sehen 03.01. und 07.01. statt. Es zeigt sich, dass die Wärmeabgabe von der Simula-
tion unterschätzt wird, im gesamten Zeitraum tritt eine Abweichung von -9 % auf. Die
Abweichung ist zwar höher als im Zeitraum 30.03. bis 05.04. aus Abschnitt 2.3 (hier -1 %),
die aufsummierte Abweichung ist jedoch in der gleichen Größenordnung (14 % im
Vergleich zu 15 %). Eine Abweichung von 9 % kann als sehr gut angesehen wer-
den, da entsprechende Unsicherheiten in der Vorgabe für Parameter (z.B. Wärme-
leitfähigkeit und -kapazität des Erdreiches) und Eingangsgrößen (z.B. Himmelstem-
peratur, Globalstrahlung) existieren.

2.4.4 Gesamt-
system

Die Ergebnisse aus Simulation und Messung werden für den Zeitraum 16.12.2015
bis 31.01.2016 für das Gesamt-
system verglichen. Meteorologische Eingangsgrößen
in das Simulationsmodell sind ausschließlich die Umgebungstemperatur und die Ge-
samteinstrahlung auf die nach Süden ausgerichtete Dachfläche. Die direkte und dif-
fuse Einstrahlung auf das Sonnenkollektorfeld, den Erdwärme-
kollektor und das Ge-
bäude muss somit näherungsweise ermittelt werden (siehe Abschnitt 2.1). Die Windgeschwindigkeit wird konstant auf 1 m/s gesetzt. Die Himmelstemperatur ent-
spricht der Umgebungstemperatur abzüglich 7 K. Die Erdreichstemperatur zu Beginn
der Simulation wird wie schon zur Simulation des Erdwärme-
kollektors in Abschnitt 2.4.2 durch Vorsimulation mit Messwerten aus dem Zeitraum 19.03.2015 bis 31.10.2015 ermittelt.

Institut für Solarenergieforschung Hameln/Emmerthal und HELMA Eigenheimbau AG

\[\text{Tabelle 2-1: Vergleich Mess- und Simulationswerte der Wärmelast für den Zeitraum 16.12.2015 bis 31.01.2016} \]

<table>
<thead>
<tr>
<th>Größe</th>
<th>Messung</th>
<th>Simulation</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmwasserbedarf</td>
<td>190 kWh</td>
<td>200 kWh</td>
<td>+5,5 %</td>
</tr>
<tr>
<td>Mittlere Warmwassertemperatur</td>
<td>44,4 °C</td>
<td>48,3 °C</td>
<td>3,9 K</td>
</tr>
<tr>
<td>Raumheizbedarf Keller</td>
<td>285 kWh</td>
<td>285 kWh</td>
<td>±0 %</td>
</tr>
<tr>
<td>Raumheizbedarf Erdgeschoss</td>
<td>1145 kWh</td>
<td>1230 kWh</td>
<td>+7,4 %</td>
</tr>
<tr>
<td>Raumheizbedarf Obergeschoss</td>
<td>743 kWh</td>
<td>743 kWh</td>
<td>±0 %</td>
</tr>
</tbody>
</table>

Der Raumheizbedarf ist für den Keller und das Obergeschoss in Messung und Simulation nahezu identisch, im Erdgeschoss liegt der Raumheizbedarf in der Simulation um 7,4 % über der Messung, dies führt zu einer Gesamtabweichung in der Raumheizlast von 4 %. Die Heizlast liegt somit in der Simulation sowohl warmwasser- als auch heizseitig leicht über den Messwerten.
Tabelle 2-2 zeigt die Ergebnisse bezüglich der solaren Wärme im System.

Tabelle 2-2: Vergleich Mess- und Simulationswerte der solaren Wärme für den Zeitraum 16.12.2015 bis 31.01.2016, Messung: BTA-Beladung und gesamter Solarertrag werden an unterschiedlichen Stellen bilanziert (zwischen beiden Punktten Wärmeverluste von 30 kWh)

<table>
<thead>
<tr>
<th>Größe</th>
<th>Messung</th>
<th>Simulation</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamter Solarertrag</td>
<td>509 kWh</td>
<td>395 kWh</td>
<td>-22,3 %</td>
</tr>
<tr>
<td>Solare Beladung Speicher</td>
<td>0 kWh</td>
<td>16 kWh</td>
<td>+16 kWh</td>
</tr>
<tr>
<td>Speichertemperatur (unten)</td>
<td>23,5 °C</td>
<td>20,4 °C</td>
<td>-3,1 K</td>
</tr>
<tr>
<td>Mittlere Eintrittstemp. FriWa</td>
<td>48,7 °C</td>
<td>50,7 °C</td>
<td>+2,0 K</td>
</tr>
<tr>
<td>Mittlere Austrittstemp. FriWa</td>
<td>32,4 °C</td>
<td>26,6 °C</td>
<td>-5,2 K</td>
</tr>
<tr>
<td>Solare Beladung BTA im EG</td>
<td>234 kWh</td>
<td>196 kWh</td>
<td>-16,5 %</td>
</tr>
<tr>
<td>Solare Beladung BTA im OG</td>
<td>245 kWh</td>
<td>183 kWh</td>
<td>-25,5 %</td>
</tr>
<tr>
<td>BTA-Kerntemperatur EG</td>
<td>20,8 °C</td>
<td>22,0 °C</td>
<td>+1,2 K</td>
</tr>
<tr>
<td>BTA-Kerntemperatur OG</td>
<td>19,0 °C</td>
<td>21,9 °C</td>
<td>+2,9 K</td>
</tr>
<tr>
<td>Solare Beladung EWK</td>
<td>0 kWh</td>
<td>0 kWh</td>
<td>±0 %</td>
</tr>
</tbody>
</table>

Der solare Ertrag wird um etwa 22 % geringer simulierte. Hervorgerufen wird dies im Wesentlichen durch eine zeitweise Verschattung des Strahlungssensors (siehe Abschnitt 2.4.1). Bei der Verteilung der Solarerträge auf die einzelnen Senken zeigt sich, dass in der Simulation ein geringer Anteil auf die solare Beladung des Wärmespeichers entfällt während real keine Speicherbeladung stattfindet. Dies liegt daran, dass im simulierten Speicher zeitweise geringere Temperaturen im unteren Bereich auftreten und damit eine geringere Kollektortemperatur für eine Beladung notwendig ist. Die geringeren Temperaturen resultieren aus dem besseren Wärmeübertragungsverhalten der simulierten Frischwasserstation, die nicht nur zu höheren Warmwasseraustrittstemperaturen (siehe Tabelle 2-1) sondern auch zu geringeren Speichereintrittstemperaturen führt (im Mittel 5 K unter dem Messwert). Darüber hinaus arbeitet die reale Regelung der Frischwasserstation nicht so punktgenau wie in der Simulation, so dass der zur Erreichung der Solltemperatur notwendige Massenstrom nicht sofort erreicht bzw. überschritten wird.

Sowohl in der Simulation als auch in der Messung findet im gesamten Zeitraum keine Beladung des Erdreiches statt. Der simulierte Eintrag in die BTA fällt vor allem im Obergeschoss deutlich geringer aus. Hierzu tragen neben der zeitweise zu gering vorgegebenen Einstrahlung (s.o.) die höheren Kerntemperaturen in der Simulation bei, die eine höhere Kollektortemperatur zum Betrieb der BTA erfordern. Vor allem der Kern im Obergeschoss weist eine höhere Temperatur als in der Messung auf, so dass es hier zu der größeren Abweichung kommt. Grund für die geringeren Bauteiltemperaturen ist die Wärmebrückenwirkung der aufgelagerten Geschossdecke im Gebäude mit zu knapp dimensioniertem äußerem Dämmriegel.
Tabelle 2-3 zeigt die Ergebnisse bezüglich der Wärmepumpe.

<table>
<thead>
<tr>
<th>Größe</th>
<th>Messung</th>
<th>Simulation</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeumsatz Verdampfer</td>
<td>1800 kWh</td>
<td>1902 kWh</td>
<td>+5,7 %</td>
</tr>
<tr>
<td>Wärmeumsatz EWK</td>
<td>1900 kWh</td>
<td>1920 kWh</td>
<td>+1,0 %</td>
</tr>
<tr>
<td>Wärmeumsatz Kondensator</td>
<td>2504 kWh</td>
<td>2516 kWh</td>
<td>+0,5 %</td>
</tr>
<tr>
<td>Stromverbrauch WP</td>
<td>653 kWh</td>
<td>614 kWh</td>
<td>-6,0 %</td>
</tr>
<tr>
<td>Arbeitszahl WP</td>
<td>3,84</td>
<td>4,10</td>
<td>+0,26</td>
</tr>
<tr>
<td>Quellentemperatur In</td>
<td>0,4 °C</td>
<td>-0,3 °C</td>
<td>-0,7 K</td>
</tr>
<tr>
<td>Quellentemperatur Aus</td>
<td>4,6 °C</td>
<td>3,6 °C</td>
<td>-1,0 K</td>
</tr>
<tr>
<td>Senkentemperatur In</td>
<td>35,9 °C</td>
<td>32,4 °C</td>
<td>-3,4 K</td>
</tr>
<tr>
<td>Senkentemperatur Aus</td>
<td>48,6 °C</td>
<td>45,9 °C</td>
<td>-2,7 K</td>
</tr>
<tr>
<td>Speichertemp. NH1</td>
<td>48,9 °C</td>
<td>49,8 °C</td>
<td>+0,9 K</td>
</tr>
<tr>
<td>Speichertemp. NH2</td>
<td>40,5 °C</td>
<td>41,9 °C</td>
<td>+1,4 K</td>
</tr>
</tbody>
</table>

Der Wärmeumsatz am Kondensator zeigt eine hohe Übereinstimmung zwischen Simulation und Messung, d.h. die Wärmennachfrage fällt in beiden Fällen gleich hoch aus, obwohl nach Tabelle 2-1 die Wärmelast aus Raumheizung (4 %) und Warmwasser (6 %) in der Simulation höher ist. Da zudem der solare Eintrag in den Speicher in der Simulation gering ist (siehe Tabelle 2-2), müssen in der Experimentalanlage höhere Wärmeverluste des Speichers auftreten. Dies bestätigen die Messdaten, die vor allem auf erhöhte Verluste aufgrund von thermischer Zirkulation über externe Komponenten hinweisen (siehe Abschnitt 4.2).

Auf der Verdampferseite der Wärmepumpe ist der simulierter Wärmeumsatz um ca. 6 % höher als in der Messung, obwohl der Wärmeentzug des EWK fast identisch ist. Grund ist die hohe Diskrepanz in der Messung zwischen dem Wärmeentzug aus dem EWK und der am Verdampfer umgesetzten Wärmemenge von 100 kWh/5 %, während in der Simulation der Unterschied 18 kWh/1 % beträgt. Die realen Wärmeverluste zwischen Erdwärmekollektorein-/austritt und Wärmepumpenananschluss sind somit weitaus höher als in der Simulation.

Der simulierter Stromverbrauch der Wärmepumpe liegt mit 6 % unter dem gemessenen Wert, die Arbeitszahl fällt somit mit 4,1 deutlich höher aus als in der Messung (3,84). Die Untersuchung des Teilsystems der Wärmepumpe in Abschnitt 2.2 hat einen Unterschied von 0,07 in der Arbeitszahl gezeigt. Neben dieser Abweichung treten im Gesamtsystem zusätzlich Unterschiede im Temperaturniveau der Wärmepumpe auf. Auf der Quellenseite liegt die energetisch gemittelte Temperatur in der Simulation um etwa 1 K unter den Messwerten, dies entspricht dem Ergebnis aus der Untersuchung im Teilsystem des Erdwärmekollektors in Abschnitt 2.4.3. Auf der Kondensatorseite treten um ca. 3 K geringere Temperaturen auf, obwohl die simulierten Speichertemperaturen in Höhe der Temperatursensoren der Nachheizbereiche um etwa 1 K über den Messwerten liegt. Dies deutet daraufhin, dass real nicht nur erhöhte Wärmeverluste des Speichers (s.o.), sondern auch eine schlechtere thermi-
sche Schichtung im Speicher auftreten. Dies führt dazu, dass die Kondensatorausrittstemperatur in der Experimentalanlage fast mit der Temperatur im oberen Nachheizbereich übereinstimmt, während in der Simulation eine weitaus größere Differenz vorliegt. Insgesamt liegt damit in der Simulation der von der Wärmepumpe im Mittel zu leistende Temperaturhub um 2 K über den Messwerten. Im Betrieb führt ein um 2 K geringerer Temperaturhub zu einer um etwa 2 % höheren Arbeitszahl, so dass dadurch die Arbeitszahl um etwa 0,16 größer ausfällt.

Abschließend zeigt Tabelle 2-4 die wesentlichen Größen zur Bewertung des Gesamtsystems. Hierbei ist die solare Deckung definiert als Verhältnis aus Solarertrag für Speicher und BTA zur Summe aus Solar- und Wärmepumpenertrag am Kondensator:

$$f_{\text{Sol}} = \frac{Q_{\text{Solar,Speicher}} + Q_{\text{Solar,BTA}}}{Q_{\text{Solar,Speicher}} + Q_{\text{Solar,BTA}} + Q_{\text{WP,Kondensator}}}$$ \hspace{1cm} (6)

In der solaren Deckung wird der komplette Solarertrag der BTA berücksichtigt, auch wenn dieser nicht komplett zu einer Reduktion der Raumheizung sondern zu einer Erhöhung der Raumtemperatur führt. Ebenso wird in der Systemarbeitszahl neben Warmwasser und Raumheizung der komplette BTA-Ertrag verwendet:

$$AZ_{\text{System}} = \frac{Q_{\text{Raumheizung}} + Q_{\text{Wassermenge}} + Q_{\text{Solar,BTA}}}{W_{\text{el,Gesamt}}}$$ \hspace{1cm} (7)

Neben dieser Definition wäre eine zweite Kennzahl sinnvoll, die nur den Teil des BTA-Ertrages berücksichtigt, der zu einer Reduktion im Raumheizbedarf führt. Ein solcher Wert ist aber aus den Messungen der Experimentalanlage nicht zu ermitteln.

<table>
<thead>
<tr>
<th>Größe</th>
<th>Messung</th>
<th>Simulation</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solare Deckung</td>
<td>16,1 %</td>
<td>13,5 %</td>
<td>-16 %</td>
</tr>
<tr>
<td>Nutzwärmemenge</td>
<td>2363 kWh</td>
<td>2458 kWh</td>
<td>+4 %</td>
</tr>
<tr>
<td>Gesamtstromverbrauch</td>
<td>743 kWh</td>
<td>672 kWh</td>
<td>-10 %</td>
</tr>
<tr>
<td>Stromverbrauch Pumpen</td>
<td>90 kWh</td>
<td>58 kWh</td>
<td>-35 %</td>
</tr>
<tr>
<td>Systemarbeitszahl</td>
<td>3,83</td>
<td>4,22</td>
<td>+0,39</td>
</tr>
</tbody>
</table>

Tabelle 2-2 hat bereits gezeigt, dass die simulierten Solarerträge geringer als in der Messung ausfallen. Da die Wärmemengen am Kondensator nahezu identisch sind, führt dies zu einer um 16 % geringeren solaren Deckung (2.6 %-Punkte).

Die Effizienz der Wärmepumpe fällt aufgrund des geringeren Kondensatorturniervs in der Simulation höher aus. Daraus ergibt sich trotz des schlechteren Solarertrages ein um 10 % geringerer simulierter Gesamtstromverbrauch. Dies führt zu einer um 0,39 höheren Systemarbeitszahl. Der Unterschied fällt hier höher aus als in der Arbeitszahl der Wärmepumpe nach Tabelle 2-4, da in dieser die um 4 % höhere Nutzwärmemenge in der Simulation sowie ein um mehr als 30 % geringerer Stromverbrauch der Umwälzpumpen berücksichtigt wird.
3 Systemsimulationen

In den Abschnitten 3.1 und 3.2 wird simulativ untersucht, wie sich andere Randbedingungen bezüglich Wärmelast und Wetter auf die Experimentalanlage auswirken. Dies geschieht auf Grundlage des mit den Messdaten der Experimentanlage abgeglichenen Simulationsmodells aus Abschnitt 2.4. Die Wärmelast wird anders als dort durch die bereits in den Simulationsstudien im Projekt „SH-T-Opt“ (Glembin 2015) verwendeten Bedingungen definiert. In der Basisvariante sind folgende Bedingungen eingestellt:

- Wetterdaten von Meteonorm für den Standort Zürich
- Raumsolltemperatur von 20 °C in allen beheizten Zonen
- Luftaustauschrate von 0,4 1/h in allen thermischen Zonen
- Warmwassermassenstrom und Kaltwassertemperatur in Anlehnung an IEA Task 44 (Haller 2013)

In Abschnitt 3.3 wird eine Weiterentwicklung des Reglers vorgestellt, die eine bessere Betriebsführung der beiden solaren Wärmesenken Pufferspeicher und Bauteilaktivierung ermöglicht. Diese Weiterentwicklung ist während der zweiten Messphase (siehe Kapitel 4.4) aufgespielt und erfolgreich in Betrieb genommen worden.

3.1 Variation der Wetterdaten

![Abbildung 3.1: Einstrahlungssumme auf 45° geneigte Südfläche, Gradtagzahl nach VDI 2067 der ISFH-Wetterdaten Hannover, simulierter Raumheizbedarf für Ref-](image-url)
Die dargestellten Kennwerte der Wetterdaten zeigen:

- Der Raumheizbedarf im Referenzsystem variiert zwischen 31 kWh/m²a im Jahr 1989 und 51 kWh/m²a im Jahr 1996 und folgt dabei nicht ausschließlich der Gradtagzahl. 1991 tritt bei einer Gradtagzahl von 3670 ein Heizwärmebedarf von 38 kWh/m²a auf, 1992 steigt trotz einer geringeren Gradtagzahl von 3320 der Heizwärmebedarf auf 41 kWh/m²a an. Grund hierfür ist die geringere Einstrahlung, die von 1194 kWh/m²a in 1991 auf 1120 kWh/m²a in 1992 sinkt, innerhalb der Heizperiode (Nov – März) ist die Reduktion noch stärker (von 305 kWh/m² auf 200 kWh/m²).
- Unter Berücksichtigung der BTA-Wärmemenge wird im Sonnenhaus mehr Wärme für die Raumheizung benötigt. Die zusätzliche Wärmemenge aus der BTA liegt zwischen 5-9 kWh/m²a, die dazu führt, dass der Raum zeitweise auf Temperaturen oberhalb der Solltemperatur von 20°C geheizt wird.

Abbildung 3.2 zeigt für die Simulationen mit den Wetterdaten für Hannover Raumheizbedarf, Stromverbrauch sowie die Zeiten ohne Komfort (Raumtemperatur <19,5 °C bzw. WW-Temperatur <44 °C) und die Stagnationszeiten. Der hier dargestellte Raumheizbedarf entspricht der Wärmemenge, die von den Radiatoren abgegeben wird, d.h. die in der BTA umgesetzte Wärmemenge ist nicht enthalten.

Die Energieeinsparung liegt in den Jahren um 0-7 % unter der solaren Deckung. Die Energieeinsparung wird von den solaren Erträgen und vom Heizwärmebedarf beeinflusst. Im Jahr 1993 wird mit 38 % die geringste Energieeinsparung erzielt. Wie auch
bei der solaren Deckung wird der höchste Wert 1989 erreicht, hohe solare Erträge und ein geringer Raumheizbedarf führen zu einer Energieeinsparung von 52 %.

Die Simulationen zeigen, dass die Anlage bei den unterschiedlichen Wetterbedingungen ohne Komfortprobleme funktioniert. Die Quelle der Wärmepumpe ist dabei so groß dimensioniert, dass kein Betrieb des Heizstabes notwendig ist. Die Quelle wird in den folgenden Simulationen analog zum Vorgehen in Kapitel 4.3 um 2 EWK-Kreise und damit um 50 % reduziert, der Massenstrom wird auf den Nennwert der Wärmepumpe belassen. Abbildung 3.4 zeigt die Ergebnisse.

Die Simulationsergebnisse zeigen, dass auch mit halbierter Quelle keine Komfortprobleme bestehen, allerdings muss hierzu im Jahr 1996 der Heizstab mit 500 kWh ca. 5 % der von der Nachheizung erbrachten Wärmemenge beitragen. Im Vergleich zu Abbildung 3.2 reduziert sich die Jahresarbeitszahl um 0,34 bis 0,61. Dies führt zu einem Anstieg des Stromverbrauchs um 9 % in 1989 bis maximal 18 % in 1996 (hier Heizstabbetrieb) Dennoch ist festzuhalten, dass mit der deutlich verkleinerten Quelle der Komfort auch in kalten Jahren wie 1996 erfüllt wird.

3.2 Variation der Wärmelast

ben Raumheizbedarf und Stromverbrauch die Zeiten ohne Komfort. Der dargestellte Raumheizbedarf entspricht der Wärmemenge, die von den Radiatoren abgegeben wird, d.h. die in der BTA umgesetzte Wärmemenge ist nicht enthalten.

Abbildung 3.5: Variation der Raumsolltemperatur in der Experimentalanlage für zwei Wetterdatensätze: Zeit ohne Komfort, BTA-Ertrag, Raumheizbedarf und Stromverbrauch, maximale Raumtemperatur für BTA-Beladung konstant bei 24 °C

Die Variation der Raumsolltemperatur zeigt:

- Der Raumheizbedarf nimmt ausgehend vom Basisfall mit 20 °C bei Reduktion auf 18 °C um 28 % (Zürich)/23 % (Hannover 1996) ab, während bei höheren Sollwerten der Bedarf um 43 %/34 % bei 22 °C und 166 %/123 % bei 24 °C zunimmt. Der Raumheizbedarf wird dabei nicht nur von der höheren Wärmemenge zur Beheizung des Raumes beeinflusst, sondern auch von Reduktionen im BTA-Ertrag. Da die maximale Raumtemperatur für die Beladung der BTA konstant bei 24 °C verbleibt, wird die Betriebszeit der BTA bei höheren Raumsolltemperaturen reduziert und bei einem Sollwert von 24 °C vollständig verhindert.

- Die Jahresarbeitszahl zeigt für beide Standorte nur geringe Unterschiede. Während für Zürich eine leichte Reduktion zwischen 3,96 bei 18 °C auf 3,92 bei 24 °C auftritt, steigt die JAZ für Hannover 1996 sogar von 3,80 auf 3,86 trotz des ansteigenden Wärmeentzugs aus dem Erdreich an. Grund dafür sind höhere Quellentemperaturen; am Verdampfer der Wärmepumpe steigt die mittlere Eintrittstemperatur von 0,6 °C bei 20 °C auf 1,7 °C bei 24 °C. Die minimal auftretende Quellenausstrittstemperatur bleibt dagegen nahezu konstant bei −3,8 °C, dieser Wert liegt oberhalb der Minimaltemperatur von −5 °C, so dass in allen Simulationen kein Heizstabbetrieb notwendig ist. Eine genauere Analyse, warum es zu einem Anstieg der Quellentemperatur bei höheren Raumheizlasten kommt wird weiter unten vorgenommen.
Bei sich ändernder Raumsolltemperatur wird gleichzeitig die Komfortgrenze verschoben, die immer 0,5 K unter dem Sollwert liegt. Unterhalb einer Raumsolltemperatur von 24 °C treten keine Komfortprobleme auf, erst bei 24 °C gibt es längere Zeiträume ohne Komfort. Grund für das zeitweise Unterschreiten der Komfortgrenze von hier 23,5 °C ist aber nicht eine unterkühlte Quelle aufgrund zu langen Betriebs der Wärmepumpe (kein Heizstabeinsatz), sondern eine zu geringe Leistungsabgabe der Wärmepumpe, die nicht mehr in der Lage ist, die erforderliche Wärmeleistung aufzubringen.

Durch den reduzierten BTA-Betrieb bei höheren Raumsolltemperaturen erhöhen sich die Betriebszeit und der solare Wärmeeintrag in den Pufferspeicher, so dass zusätzlich von der Wärmepumpe eingebrachte Wärme geringer ausfällt als die Zunahme im Raumheizbedarf. Gleiches gilt umgekehrt bei geringeren Raumsolltemperaturen. Da die Jahresarbeitszahl der WP nahezu gleich bleibt, sind die Änderungen im Stromverbrauch fast identisch mit den Unterschieden in der Wärmeabgabe am Kondensator. Der Stromverbrauch reduziert sich um 21 % (Zürich) bzw. 18 % (Hannover 1996) bei 18 °C Raumsolltemperatur und erhöht sich um 74 % bzw. 58 % bei 24 °C.

Die bei variierten Raumsolltemperaturen auftretenden Änderungen im Solarertrag der Speicherbeladung fallen geringer aus als die Unterschiede im BTA-Ertrag. Bei höheren Raumsolltemperaturen steigt somit zwar der Solarertrag in den Speicher an, dieser kann aber die Reduktion in der BTA nicht ausgleichen und die solare Deckung sinkt von 48,8 % (Zürich) bzw. 41,1 % (Hannover 1996) bei 20 °C auf 31,2 % bzw. 26,4 % bei einem Sollwert von 24 °C.

Das Diagramm zeigt, dass in den Wintermonaten die Quelle bei höheren Raumstemperaturen stärker belastet ist und daher geringere Arbeitszahlen der Wärmepumpe auftreten. Die Unterschiede zwischen den Arbeitszahlen sind allerdings nur klein, die Arbeitszahl für den Zeitraum November bis April liegt mit 3,83 bei einer Raumsolstemperatur von 20 °C um 0,08 über dem Wert von 3,75 bei 24 °C. Größere Unterschiede bestehen nicht, da die Quellentemperatur im energetischen Mittel in diesem Zeitraum bei 24 °C nur 0,5 °C unter dem Wert bei 20 °C liegt. Zwar treten bei 24 °C zeitweise auch deutlich tiefere Quellentemperaturen auf, diese liegen aber immer oberhalb von -5 °C, d.h. der Heizstab muss unabhängig von der eingestellten Raumstemperatur nicht eingesetzt werden.

Aufgrund der Umgebungsbedingungen zeigen sich in allen Simulationen höhere Arbeitszahlen in den Monaten Mai bis Oktober. Bei einer Raumsolstemperatur von 20 °C ist aber der Anteil an Wärmebereitstellung in diesen Monaten mit 1 % so gering, dass sich die hohen Arbeitszahlen nicht auf den Jahreswert auswirken. Im Gegensatz dazu liegt der Anteil bei 24 °C Raumsolstemperatur mit 14 % weitaus höher, so dass hier die hohen Quellentemperaturen und damit guten Betriebsbedingungen der Wärmepumpe zu einem Anstieg der Jahresarbeitszahl führen. Aus diesen Gründen – geringe Unterschiede der Quellentemperatur im Winter, die keinen Heizstabeinsatz notwendig machen, und ein signifikanter Anteil an Betriebszeit in den Sommermonaten mit hohen Quellentemperaturen – wird im Jahr bei 24 °C eine höhere Jahresarbeitszahl erreicht als bei 20 °C.

Bei der Variation der Raumsolstemperatur in Abbildung 3.5 beträgt die maximale Raumtemperatur bei Beladung durch die BTA konstant 24 °C. Dies führt dazu, dass eine Erhöhung der Raumsolstemperatur die für die BTA nutzbare Temperaturdiffe-
renz zwischen Raumsolltemperatur und dem Maximalwert reduziert. Im Folgenden wird die maximale Raumtemperatur variabel eingestellt, so dass diese immer 4 K über der Raumsolltemperatur liegt. Die Ergebnisse zeigt Abbildung 3.7.

Abbildung 3.7: Variation der Raumsolltemperatur in der Experimentalanlage für zwei Wetterdatensätze: Zeit ohne Komfort, BTA-Ertrag, Raumheizbedarf und Stromverbrauch, maximale Raumtemperatur für BTA-Beladung 4 K über Raum­sollwert

Bei einer Raumsolltemperatur von 23 °C sinkt der Energieverbrauch im Vergleich zur konstanten BTA-Temperatur aus Abbildung 3.5 um 1 %/0,5 % (Zürich/Hannover 1996), bei 24 °C um 6 %/3 %. Bei 21 °C und 22 °C kommt es dagegen zu einem Anstieg von 0,5 %/0,6 % bis 1 %/1,1 %, da der erhöhte BTA-Ertrag zu einer Reduktion in der solaren Speicherbeladung führt. Aus dem gleichen Grund kommt es bei Raumsolltemperaturen von 18 °C und 19 °C trotz geringerem BTA-Ertrag (maximale Raumtemperatur unterhalb von 24 °C) zu einer Reduktion um 1,3 %/0,1 % bzw. 0,4 %/0,1 % im Vergleich zur konstanten Maximaltemperatur von 24 °C.

Im Falle höherer Raumsolltemperaturen lässt sich der BTA-Ertrag somit durch Anpassung der maximalen Raumtemperatur erhöhen. Allerdings führt dies nicht unbedingt zu einem geringeren Energiebedarf, da auch der Solarertrag der Speicherbeladung beeinflusst wird.

Abbildung 3.8: Variation der Warmwassermenge in der Experimentalanlage für zwei Wetterdatensätze: Zeit ohne Komfort, Raumheizbedarf und Stromverbrauch

Da der eingesetzte Faktor für den Massenstrom zu jedem Zeitpunkt der Simulation verwendet wird, steigt der Warmwasserbedarf proportional zum Faktor an, d.h. bei einem Faktor von 2 verdoppelt sich die Warmwassermenge. Auch mit doppeltem Warmwasserbedarf treten keine Komfortprobleme auf, es kommt lediglich mit den Wetterdaten für Hannover zu einem leichten Anstieg der Zeit ohne Komfort im OG auf 4 h (Grund ist die Priorisierung der WW-Bereitung). Wie schon bei der erhöhten Raumsolltemperatur wirkt sich der stärkere Entzug aus dem Erdreich nicht auf die Quellentemperaturen aus, so dass sich die Jahresarbeitszahl nur wenig ändert und die minimale Verdampfereintrittstemperatur von -5 °C zu keinem Zeitpunkt unterschritten wird (somit kein Heizstabbetrieb notwendig). Der Stromverbrauch steigt im Falle eines WW-Faktors von 2 um 14 % für Zürich und um 11 % für Hannover 1996 an.

3.3 Variable Wertigkeit bei der Systemregelung

Bisher wird im Regler eine konstante Wertigkeit verwendet, um zwischen der Beladung von BTA und Speicher zu entscheiden. Dabei hat sich eine Wertigkeit von \(W = 1 \) als der Wert erwiesen, mit dem in den Simulationen die größte Energieeinsparung erzielt wird, siehe (Glembin 2015). Unberücksichtigt bleibt bei einer konstanten Wertigkeit, dass die Betriebsbedingungen bei Beladung der BTA unterschiedlich sind, je nachdem ob die Kollektorkreisausrittstemperatur ober- oder unterhalb der eingestellten maximalen BTA-Eintrittstemperatur liegt. Liegt die Ausrittstemperatur über dem Maximalwert, wird dem Kollektormassenstrom Fluid aus dem Rücklauf der
BTA beigemischt. Damit wird gleichzeitig der Massenstrom durch den Kollektor reduziert, was wiederum den Temperaturhub im Kollektor erhöht und damit zu einem schnelleren Anstieg der Kollektoraustrittstemperatur führt. Da die BTA-Senkentemperatur in der Regel unter der unteren Speichertemperatur liegt, wird die BTA häufig solange betrieben, bis die eingestellte maximale Kollektortemperatur überschritten wird. In diesem Fall greift die Stagnationsschutzfunktion und der Kollektorbetrieb wird gesperrt, so dass auch keine Beladung des Speichers mehr möglich ist.

Dieser Betriebszustand hat sich im Verlauf der Messungen an der Experimentalanlage mehrmals eingestellt und tritt auf, da die hohe Kollektorleistung bei entsprechender Einstrahlung nicht in vollem Umfang von der BTA an das Gebäude abgegeben werden kann. Um Kosten gering zu halten ist die BTA entsprechend (Glembin 2015) als Grundlastheizung dimensioniert worden. Daher hat sie eine relativ geringe maximale Wärmeabgabeleistung, die etwa 50% der Spitzenheizlast des Gebäudes entspricht.

Um die Häufigkeit des oben beschriebenen Betriebszustandes zu reduzieren, wird eine Änderung der Regelung geprüft. Durch Änderung der Wertigkeit bei höheren Kollektoraustrittstemperaturen wird die Priorisierung in Richtung Speicherbeladung verschoben. Diese Einstellung soll vermeiden, dass eine Speicherbeladung aufgrund zu hoher Kollektortemperaturen nicht stattfinden kann. In Abschnitt 3.3.1 wird beschrieben, wie sich eine variable Berechnung der Wertigkeit im Reglercode umsetzen lässt. Die Wirksamkeit der Weiterentwicklung wird in Simulationen in Abschnitt 3.3.2 untersucht.

3.3.1 Umsetzung im Regler

Die Veränderungen betreffen den Teil der Regelung, der entscheidet, welche Wärmesenke im Falle von positiven Bedarfssignalen für Speicher und BTA beladen wird. Es werden neue Parameter eingeführt, mit denen eine obere und eine untere Wertigkeit festgelegt wird, die die Regelung je nach Kollektortemperatur berücksichtigt. Außerdem ist die Definition der Umschalttemperatur notwendig, bei der der Wechsel der Wertigkeit stattfindet. Um ein schnelles Hin- und Herschalten zwischen den Wertigkeiten zu verhindern, wird zusätzlich eine Hysterese beim Umschalten zwischen den Wertigkeiten berücksichtigt:

3.3.2 Simulationsergebnisse

Nach Einführung der variablen W-Berechnung im Regler werden folgende Variationen durchgeführt:

- Untere Wertigkeit (bei Kollektortemperaturen unterhalb Umschaltwert): 1
- Obere Wertigkeit (bei Kollektortemperaturen über Umschaltwert): 1,5 / 2 / 3 / 100
- Umschalttemperatur: 30 / 35 / 40 / 45 / 60 / 80
- Umschalthysterese: 5 K

Abbildung 3.9 zeigt neben dem Stromverbrauch den Solarertrag in den Pufferspeicher als Kennwert für die Verteilung der solaren Wärme auf die beiden Wärmespeicher und BTA.

Abbildung 3.9: Simulation mit variabler Wertigkeit: Stromverbrauch und Solarertrag im Pufferspeicher, zum Vergleich Ergebnisse mit konstanter Wertigkeit von 1

Es zeigt sich:

- Wird eine obere Wertigkeit von 1,5 oder eine Umschalttemperatur von min. 60 °C eingestellt, zeigt sich kein Effekt im Vergleich zu einer konstanten Wertigkeit
- Bei höheren Umschalttemperaturen vermindert sich der Effekt, d.h. der Solarertrag in den Pufferspeicher nimmt ab. Die Unterschiede im Stromverbrauch zwischen unterschiedlichen oberen Wertigkeiten werden kleiner. Eine obere Wertigkeit von 3
führt hier zum geringsten Stromverbrauch, der 2 % unter der konstanten Wertigkeit liegt.

Die Simulationen zeigen einen positiven Effekt der variablen Wertigkeit. Eine sinnvolle Einstellung der Parameter unter den Bedingungen der Simulation ist:

- \(W_{\text{unten}} = 1 \)
- \(W_{\text{Oben}} = 3 \)
- \(\vartheta_{\text{Umschalt}} = 35 \)
- \(\Delta \vartheta_{\text{Umschalt}} = 5 \text{ K} \)

Es ist zu beachten, dass die Umschalttemperatur mit der maximalen BTA-Eintrittstemperatur zusammenhängt. Es ist zu erwarten, dass bei Erhöhung der maximalen BTA-Eintrittstemperatur eine höhere Umschalttemperatur zu einem geringeren Stromverbrauch führt. Sinnvoll ist es daher die Umschalttemperatur auf die maximale BTA-Eintrittstemperatur zu setzen:

- \(\vartheta_{\text{Umschalt}} = \vartheta_{\text{BTA,In,Max}} \)

Auf Grundlage der Simulationsergebnisse ist die Regelung der Experimentalanlage am 27.07.2016 mit der variablen Wertigkeit ergänzt worden.
4 Messtechnische Analyse des Gebäudebetriebs

4.1 Das Experimentalgebäude

Das Experimentalgebäude ist im Stadtgebiet Hannovers errichtet worden und besitzt eine Wohnfläche von etwa 250 m² auf drei Etagen bzw. eine EnEV- Nutzfläche von 294 m². Das Satteldach hat eine um etwa zehn Grad nach Osten abweichende Nord-Süd Ausrichtung, der Fensterflächenanteil beträgt im Mittel 10 %. Der Heizwärmebedarf des Gebäudes liegt laut EnEV bei etwa 10.500 kWh/a. Wesentliche Daten zur technischen Gebäudeausrüstung sind in Tabelle 4-1 zusammengefasst.
Tabelle 4-1: Übersicht der technischen Gebäudeausrüstung des Experimentalgebäudes

<table>
<thead>
<tr>
<th>Technik</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarkollektor</td>
<td>Indachkollektor, 45° Neigung, Aperturfläche 31,2 m²</td>
</tr>
<tr>
<td>Wärmepumpe</td>
<td>Sole-Wasser Wärmepumpe mit 8 kW Nennleistung, 2 kW Kompressoreleistung</td>
</tr>
<tr>
<td>Erdwärmekollektor</td>
<td>170 m² Kollektorfläche in 4 Kreisen (ohne Erschließungsgraben), PE-Rohr mit 0,5 m Verlegeabstand</td>
</tr>
<tr>
<td>Bauteilaktivierung</td>
<td>Ca. 160 m PEX Rohr je Zwischendecke (KG/EG und EG/OG), Verlegeabstand 0,5 m, ein Fluidkreis je Geschossdecke, bifilare Verlegung, direkter Anschluss an den Kollektorkreis (Glykol als Wärmträger)</td>
</tr>
</tbody>
</table>

Die nachfolgenden Bilder der Abbildung 4.1 zeigen das Experimentalgebäude nach der Gebäudeplanung durch HELMA im Entwurfsstadium (links) und unmittelbar nach Inbetriebnahme im Januar 2015 (rechts).

Abbildung 4.1: Experimentalgebäude nach Fertigstellung der Bauplanung (links) und nach Inbetriebnahme im Januar 2015 (rechts)

Die Fenster im EG sind partiell mit außenliegenden Sonnenschutzeinrichtungen versehen (Süd, Ost und West orientierte Fenster). Ihre Bedienung erfolgt manuell. Das
Gebäude besitzt keine zentralen oder dezentralen Zwangslüftungseinrichtungen, der Luftaustausch erfolgt ausschließlich über Fensterlüftung.

Wärmemequellen
- Solarkollektor
- Wärmepumpe

Wärmespeicher/-senken
- Bauteilaktivierung (EG + OG)
- Pufferspeicher
- Erdreichkollektor

Wärmesenken
- Raumheizung
- Trinkwarmwasser

Abbildung 4.2: Darstellung der Bilanzkreise, wie sie mit dem realisierten Messtechnikkonzept erfasst werden

Ausführlichere Beschreibungen zur Planung und Realisierung des Experimentalgebäudes sowie weitere Angaben zum messtechnischen Konzept finden sich in (Glembin 2015).

4.2 Betriebsphase I: Systemeinregelung

Tabelle 4-2: Übersicht der Auswertegrößen für die erste Jahresbilanz des Experimentalgebäudes von April 2015 bis März 2016. Prozentangaben der Solarerträge in den verschiedenen Senken beziehen sich auf den solaren Gesamtertrag

<table>
<thead>
<tr>
<th>Auswertegröße</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarertrag gesamt</td>
<td>8525 kWh (274 kWh/m²)</td>
</tr>
<tr>
<td>In BTA EG</td>
<td>2150 kWh (25 %)</td>
</tr>
<tr>
<td>In BTA OG</td>
<td>1949 kWh (23 %)</td>
</tr>
<tr>
<td>In Speicher</td>
<td>2844 kWh (33 %)</td>
</tr>
<tr>
<td>In EWK</td>
<td>1295 kWh (15 %)</td>
</tr>
<tr>
<td>Solare Deckung</td>
<td>52 %</td>
</tr>
<tr>
<td>Nutzwärme RH</td>
<td>5369 kWh</td>
</tr>
<tr>
<td>Nutzwärme TWW</td>
<td>994 kWh</td>
</tr>
<tr>
<td>Strombedarf gesamt</td>
<td>2173 kWh</td>
</tr>
<tr>
<td>JAZ WP</td>
<td>3,45</td>
</tr>
</tbody>
</table>
Der solare Gesamtertrag (gemessen am Eintritt in die Wärmeverteilung des Heizraums) beträgt 274 kWh/m² für den knapp 32 m² großen Sonnenkollektor oder 232 kWh/m² ohne die Berücksichtigung des Eintrags der Überschusswärme aus der Stagnationsvermeidung in den Erdwärmelektron. Gut 50 % des Ertrags werden in die BTA gespeist, während ein weiteres Drittel im Speicher genutzt wird. Die verbleibenden 15 % sind Überschusswärme, die aus dem Stagnationsvermeidungsbetrieb in das Erdreich geführt werden und dort den EWK regenerieren. Insgesamt resultiert eine solare Deckung von 52 % (Definition siehe Gleichung (6) in Kapitel 2.4.4).

Der Nutzwärmebedarf für das Experimentalgebäude mit 294 m² Nutzfläche nach EnEV liegt mit 5369 kWh (18 kWh/m²a) sehr niedrig, beziffert jedoch auch nur die Wärmemenge, die über die Radiatoren, überwiegend durch das nichtsolare Heizsystem gedeckt werden. Einen weiteren wesentlichen Anteil an der Raumbeheizung hat die durch die BTA abgegebene Energie, die in Summe etwa 43% des gesamten Raumwärmeverbrauchs deckt. Der Wärmebedarf für die TWW Bereitung liegt mit knapp 1000 kWh für einen Zweipersonenhaushalt im Erwartungsbereich.

Die Wärmepumpe arbeitet mit einer JAZ von 3,45. Die Definition der JAZ erfolgt dabei nach (Glembin 2015, S.34f.) und bilanziert die Wärmeabgabe von Kondensator und Heizstab im Verhältnis zur elektrischen Leistungsaufnahme von Kompressor und Heizstab, wobei der Strombedarf für Kondensator- und Verdampferkreispumpe sowie für die interne Regelung der Wärmepumpe aus mess-technischen Gründen ebenfalls enthalten ist.

Endenergetisch resultiert letztlich ein Gesamtstrombedarf (alle elektrischen Verbraucher zur Wärmebereitung und -bereitstellung inkl.) von 2173 kWh oder 7,4 kWh/m² (bezogen auf EnEV Nutzfläche). Den aktuellen Primärenergiefaktor des Stroms laut EnEV vorausgesetzt (fPE = 1,8), liegt dieser Wert primärenergetisch laut Selbstverständnis des Sonnenausinstituts im gewünschten Bereich unter 15 kWh/m²a (SoH-Institut 2016) und kann somit auch primärenergetisch mit den konventionellen Sonnenhauskonzepten mithalten.

4.2.1 Vergleich mit Simulationsergebnissen

Zur Bewertung und Einschätzung dieser Messergebnisse soll im Folgenden ein Vergleich zu Ergebnissen aus den Systemsimulationen mit Hannover Wetterdaten entsprechend Abschnitt 3.1 herangezogen werden. Wie im Abschnitt 2 noch diskutiert wird, eignet sich die Nachsimulation des gesamten Bilanzzeitraums aus verschiedenen Gründen nicht, um für den Vergleich der Messdaten mit Simulationen herangezogen zu werden. Diese Gründe sind nachfolgend zusammengefasst:

- Durch die kosten- und aufwandsbezogene Optimierung des Messkonzepts fehlen für eine zuverlässige Verwendung der Simulationsmodelle meteorologischen Messgrößen. Dies betrifft z.B. die Aufteilung von Diffus- und Direkstrahlung, die aktuelle Himmelstemperatur, Windgeschwindigkeiten am Kollektor, aber auch über der Erdoberfläche (Parameter des EWK- Mo-
dells) sowie einer genaueren Rasterung der Erdreichtemperaturfelder am EWK bzw. in seiner unmittelbaren Umgebung. (siehe auch Abschnitt 2)

- Einzelne Sensormesswerte werden zur Vereinfachung als repräsentative Mitteltemperatur für z.T. einen erheblich großen Bereich angenommen. Beispielhaft hierfür ist die BTA-Kerntemperatur, die an einer Position gemessen und für die gesamte Zwischendecke eines Geschosses als repräsentativ angenommen wird. Gleiches gilt für einige Erdreichtemperaturen, die am EWK gemessen werden.

Abbildung 4.3: Darstellung der Vergleichsgrößen Jahresmitteltemperatur, Einstrahlungs-
summe und Gradtagzahl für den Standort Hannover für die Jahre 1989 bis
2001 sowie der Summe der abs. Abweichungen von den Messgrößen aus
2015/16

Abbildung 4.4: Vergleich der Monatlichen Messdaten aus 2015/16 und 1994 für den Stand-
ort Hannover und

Im direkten Vergleich der Bewertungsgrößen zeigt sich, dass

- Der Februar im Mittel um 3,6 K kälter ausfällt als in den Messdaten 2015/16,
- Der Dezember im Mittel um 3 K kälter ist,
- Der Juli im Mittel 3,5 K wärmer ist, der August nur unwesentlich und
- Im Frühling die Einstrahlung der 2015/16 Messwerte tendenziell höher liegt
 und im Herbst/Winter eher niedriger.

Institut für Solarenergieforschung Hameln/Emmerthal und HELMA Eigenheimbau AG
Die genannten Unterschiede sind bei der Interpretation der Simulationsergebnisse und dem Vergleich zu den Messergebnissen zu berücksichtigen. Es sei ebenso darauf hingewiesen, dass das gemessene Jahr vom April 2015 bis März 2016 reicht und für die vergleichende Darstellung auf den Zeitraum Januar bis Dezember angepasst wurde. In Tabelle 4-3 sind die Auswertegrößen nochmals als Jahreswerte gegenübergestellt.

Tabelle 4-3: Vergleich der gemessenen Daten am Experimentalgebäude aus 2015/16 mit den Wetterdaten des Jahres 1994 für den Standort Hannover

<table>
<thead>
<tr>
<th></th>
<th>Messung 2015/16</th>
<th>Hannover 1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einstrahlung (45°)</td>
<td>1146 kWh/m²</td>
<td>1185 kWh/m²</td>
</tr>
<tr>
<td>Gradtagzahl</td>
<td>3382 Kd</td>
<td>3312 Kd</td>
</tr>
<tr>
<td>Temperatur</td>
<td>10,3 °C</td>
<td>10,7 °C</td>
</tr>
</tbody>
</table>

Zur besseren Vergleichbarkeit der Simulationsergebnisse werden die simulierten Nutzenergieanforderungen den gemessenen angepasst. Dies betrifft im speziellen die über die Radiatoren angeforderte Nutzwärme für die Raumheizung sowie die zur TWW- Erwärmung benötigte Energiemenge. Zur Anpassung des Raumwärmebedarfs ist deshalb die mittlere Raum solltemperatur des simulierten Gebäudes auf 19,1 °C abgesenkt worden. Da das Experimentalgebäude während der Messungen nach Auskunft der Bewohner nur teilbeheizt wurde, ist die notwendige Absenkung plausibel.

Tabelle 4-4: Vergleich der Simulationsergebnisse des Jahres 1994 mit denen der Messung aus 2015/16

<table>
<thead>
<tr>
<th></th>
<th>Messung 2015/16</th>
<th>Simulation 1994</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarertrag gesamt</td>
<td>8525 kWh (274 kWh/m²)</td>
<td>8610 kWh (276 kWh/m²)</td>
<td>+1 %</td>
</tr>
<tr>
<td>In BTA EG</td>
<td>1949 kWh (23 %)</td>
<td>2893 kWh (34 %)</td>
<td>+48 %</td>
</tr>
<tr>
<td>In BTA OG</td>
<td>2150 kWh (25 %)</td>
<td>2593 kWh (30 %)</td>
<td>+21 %</td>
</tr>
<tr>
<td>In Speicher</td>
<td>2844 kWh (33 %)</td>
<td>1573 kWh (18 %)</td>
<td>-45 %</td>
</tr>
<tr>
<td>In GHX</td>
<td>1295 kWh (15 %)</td>
<td>1094 kWh (13 %)</td>
<td>-16 %</td>
</tr>
<tr>
<td>Solare Deckung</td>
<td>52 %</td>
<td>54 %</td>
<td>+4 %</td>
</tr>
<tr>
<td>Wärme WP → Speicher</td>
<td>6438 kWh</td>
<td>6006 kWh</td>
<td>-7 %</td>
</tr>
<tr>
<td>Strombedarf gesamt</td>
<td>2173 kWh</td>
<td>1875 kWh</td>
<td>-14 %</td>
</tr>
<tr>
<td>JAZ WP</td>
<td>3,45</td>
<td>3,69</td>
<td>+7 %</td>
</tr>
<tr>
<td>Nutzwärme RH (Rad)</td>
<td>5369 kWh</td>
<td>5358 kWh</td>
<td>±0 %</td>
</tr>
<tr>
<td>Nutzwärme TWW</td>
<td>994 kWh</td>
<td>996 kWh</td>
<td>±0 %</td>
</tr>
</tbody>
</table>
Der Vergleich des Solarertrags zeigt zunächst eine nur geringe Abweichung von +1 % zugunsten der Simulation. Zum Vergleich: die Gesamtseinstrahlung im simulierten Jahr 1994 ist um etwa 3 % größer. Deutlichere Unterschiede zeigen sich bei der Analyse der Aufteilung des Solarertrags auf die drei Senken. Während im untersuchten Experimentalgebäude nur 48 % des Solarertrags für die direkte Nutzung der Bauteilaktivierung verwendet werden, liegt der Anteil bei der Simulation bei 64 % und damit um gut 1300 kWh höher.

Die Gründe für die erhebliche Abweichung liegen in Annahmen zum Lüftungs- und Verschattungsverhalten begründet, beide Einflussgrößen werden im Experimentalgebäude nicht gemessen. Das simulierte Gebäude hat automatisch gesteuerte, außenliegende Verschattungselemente an allen Süd-, Ost- und Westfenstern mit einem Einstrahlungsschwellwert von 300 W (wirksam bei Raumtemperaturen ab 1 K über RaumsoIltemperatur). Die Luftwechselrate ist mit 0,4 h⁻¹ mit einer optionalen Nacht-lüftung von 2 h⁻¹ bei Raumtemperaturen über 26 °C angenommen. Das untersuchte Experimentalgebäude hat manuelle Außenliegende Verschattungselemente nur im EG (Süd- und Ostfassade sowie einige Fenster der Ost- und Westfassade). Des Weiteren wird der tatsächliche Luftwechsel im untersuchten Gebäude durch die geringe Personenbelegung und hohen Abwesenheitszeiten geringer als 0,4 h⁻¹ eingeschätzt. Eine qualitative Aussage ist infolge der ausschließlichen Lüftung über Fensteröffnung nicht möglich. Folglich werden die simulierten passiven solaren Wärmegewinne sehr wahrscheinlich unterschätzt, während die Lüftungswärmeverluste überschätzt werden. Trotzdem ist die Abschalt-Raumtemperatur für die Regelung des Wärmeetrags durch die BTA bei Simulation und Messung mit 24 °C gleich. Wenn das Temperaturband zwischen aktueller und maximal zulässiger Raumtemperatur also durch höhere passive Gewinne und geringere Lüftungsverluste im Experimentalgebäude verringert wird, verringert sich auch das Potential für Energielieferung durch die BTA. Vertiefende Simulationen zu dieser Fragestellung werden im Kapitel 4.4 ausgewertet.

Weitere Analysen zeigen, dass die BTA im gemessenen Betrieb etwa ein 25 % geringere Laufzeit gegenüber der Simulation aufweist. Dies liegt entweder an einer geringeren Leistungsfähigkeit des realen Kollektors, höheren Hysteresen oder häufigeren Sperrzeiten durch Raumübertemperaturen.

Der Grund, weshalb der Kollektorertrag trotzdem nicht geringer ausfällt als in der Simulation ist die an den Speicher gelieferte Energie. Diese übersteigt in den Messungen die simulierte Wärmemenge um wiederum gut 1300 kWh, sodass insgesamt eine Lastverschiebung auftritt. Ein Teil der Solarwärme, die statt in die BTA in den Pufferspeicher abgegeben wird, wird dann wiederum über den Heizkreis für die Raumheizung und TWW- Bereitung eingesetzt. Der monatsweise Vergleich zwischen Solarerträgen in BTA und Speicher für Simulation und Messung ist in Abbildung 4.5 abgebildet.

Beim Vergleich der solaren Erträge in den Speicher zeichnet sich allerdings deutlich ab, dass insbesondere in den Sommermonaten die Erträge laut Messung teilweise mehr als doppelt so groß sind wie die simulierten Erträge. Da im Sommer die Last
auf die TWW- Bereitung beschränkt ist und diese bei Simulation und Messung nahezu identisch groß ist, müssen die zusätzlich anfallenden Erträge in der Messung aus einem deutlich größeren Wärmeverlust des Speichers resultieren. Ob die (teil-)solare Deckung des Wärmebedarfs in den Übergangszeiten dadurch gemindert wird, kann aus den vorliegenden Messdaten jedoch nicht abgeleitet werden.

Da der Speicher und seine Anschlüsse lückenlos gedämmt wurden und die Anschlüsse selbst als Siphons geführt sind, um Einrohrzirkulation zu vermeiden, ist neben sonstigen unentdeckten Wärmebrücken als Grund das Auftreten umlaufender Zirkulationsströme in den Anschlüssen der Frischwasserstation und der Wärmepumpe gemessen worden (siehe dazu auch Abschnitt 4.4.2 in (Glembin 2015)). Eine
Nachrüstung von Rückflussverhinderern zur Reduzierung dieser Verluste wurde vor Beginn des ungestörten Betriebs vorgenommen (siehe Abschnitt 4.4).

Durch die beschriebene Kompensation der Ertragsminderung in die BTA durch den Mehrertrag in den Speicher ist die solare Deckung im Vergleich sehr ähnlich der Simulation.

Für die gemessene geringere JAZ der WP und den höheren Gesamtstrombedarf des Systems können mehrere Ursachen angeführt werden:

- Durch die bereits beschriebenen höheren Wärmeverluste des Speichers ist die Nutzwärmeabgabe der WP zunächst um 400 kWh höher als in der Simulation.

- In den Monaten Oktober und November 2015 trat aufgrund eines technischen Problems mit dem Systemregler ein unnötiger Mehrbetrieb der WP auf hohem Temperaturniveau auf. Der Ertrag aus diesem Betrieb kam jedoch nur zu einem kleinen Anteil der Gebäudeenergieversorgung zugute und lässt sich aus den Messdaten nicht extrahieren.

- Durch den Vergleich der unterschiedlichen Wetterjahre liegt die Jahresmitteltemperatur 2015/16 um 0,4 K unter der Mitteltemperatur von 1994, in den Monaten Oktober bis März sogar um 0,7 K. Dies hat ebenfalls Rückwirkungen auf die Nutzwärmeabgabe, aber auch auf den Erdreichkollektor, der direkt von den Außenbedingungen beeinflusst wird.

- In der Beladezone des Pufferspeichers für die Raumheizung herrscht im Mittel über die Heizperiode eine um 3,8 K höhere Temperatur. Ursache hierfür ist vermutlich ebenfalls eine gegenüber der Simulation geringere Schichtungseffizienz des Speichers und - wenn auch zu einem deutlich kleineren Anteil - die geringere Umgebungstemperatur, die wiederum auf die außentemperaturgeführte Vorlauftemperatur der Raumheizung rückwirkt.

4.3 Betriebsphase I: Stresstest

Die Stresstests am neuen Systemkonzept des Experimentalgebäudes sind innerhalb von fünf Wochen zwischen 23.02.2015 und 29.03.2015 durchgeführt worden. Ziel ist die Prüfung der Leistungsreserven des Systemkonzepts, insbesondere der Nachheizung durch die Wärmepumpe, unter realen Bedingungen. Die größere Belastung...

Zur Erhöhung des Heizbedarfs sind die Bewohner angehalten worden, die Thermostatventile um eine Ziffer hin zu höheren Raumsolltemperaturen zu verändern. Gleichzeitig ist die Erdwärmekollektorfläche, die aufgeteilt auf vier Verteilkreise installiert worden ist, um zwei Kreise verkleinert worden. Die insgesamt 170 m² verfügbare Erdkollektorfläche (exkl. Erschließungsgraben) ist damit um 86 m² oder knapp 50 % verkleinert worden.

Die Betriebseinstellungen des Heizsystems sind dabei nicht verändert worden, d.h. die solare BTA kann trotz zu erwartender höherer Raumtemperaturen nur bis zu einer maximalen Raumtemperatur von 24 °C betrieben werden. Somit verringert sich für die Phase des Stresstests der Beitrag der BTA zur Raumheizung. Die mittleren Tagestemperaturen der Etagen des Experimentalgebäudes zeigt Abbildung 4.6.

1 Befand sich ein Thermostat beispielsweise bei zuvor gewünschter Raumtemperatur auf der Ventilstellung 2,5 so sollte der neue Einstellwert 3,5 betragen. Da das Gebäude nicht vollständig geheizt wurde, ist diese Umstellung nur bei Ventilen von Räumen, die auch tatsächlich beheizt worden sind, erfolgt.

Institut für Solarenergieforschung Hameln/Emmerthal und HELMA Eigenheimbau AG
Abbildung 4.6: Übersicht der Tagesmittelwerte für die mittleren Etagentemperaturen, die Außentemperatur sowie die in das Gebäude eingebrachten Wärmemengen über Radiatoren und BTA, der schraffierte Bereich markiert den Zeitraum der Stresstests

In Abbildung 4.7 werden die gemessenen Tagestemperaturen im Erdreich während der Stresstests dargestellt. Die Linien zeigen die minimale, maximale und durchschnittliche Erdreichtemperatur pro Tag sowie die mittlere Umgebungstemperatur (schwarz gestrichelt). Die grauen und grünen Flächen zeigen die aus dem Erdreich entnommene sowie die solar eingebrachte Wärmemenge über den ERK. Die Rohre des ERK sind mit einem Abstand von 0,5 m im Erdreich verlegt (Tiefe etwa 1,2 m). Die Temperatursensoren sind genau mittig zwischen den Rohrregistern platziert und haben so einen Abstand von 0,25 m zu den Rohren.

Die Einbringung von solarer Wärme in das Erdreich findet so gut wie gar nicht statt, da weder nennenswerter Wärmeüberschuss vorlag noch eine besonders dramatische Auskühlung des Erdreichs aufgetreten ist, sodass der Regler die Erdreichbeladung prioritisiert hätte. Die mittlere, dem Erdreich entnommene Wärmemenge liegt bei ca. 26 kWh/Tag und schwächt sich tendenziell gegen Ende der Versuchsphase ab.

Zu Beginn der Stressphase ist zu erkennen, dass die Temperaturspreizung zwischen minimaler und maximaler täglicher ERK Temperatur zunimmt (im Schnitt 0,46 K ge-

Abbildung 4.7: Darstellung der minimalen, maximalen und mittleren Erdreichstemperatur zwischen den Schlängen des ERK sowie die entnommene und eingebrachte Wärmemenge über den ERK, der schraffierte Bereich markiert den Zeitraum der Stresstests.

Mit steigender Umgebungstemperatur und zunehmender Solareinstrahlung sinkt die dem Erdreich entnommene Energiemenge immer stärker und die solare WärmeverSORGUNG übernimmt größere Anteile.
4.3.1 Beurteilung der Leistungsfähigkeit

Durch Urlaubszeiten der Bewohner Anfang bis Mitte Februar musste der Zeitraum der Stresstests auf eine relativ späte Phase der Heizperiode gelegt werden. Dadurch herrschten zeitweise bereits recht hohe Außentemperaturen sowie hohe solare Erträge. Die solare Deckung in dem Zeitraum beträgt bereits 48 %, was insbesondere die Nachheizung und den Erdwärmekollektor entlastet.

4.4 Betriebsphase II: Messung bei ungestörtem Betrieb

Vor Beginn der ungestörten Messphase sind an den Speicheranschlüssen der Frischwasserstation und der WP gemäß den Erkenntnissen aus Abschnitt 4.2.1 Rückflussverhinderer nachgerüstet worden, um so das Auftreten unerwünschter umlaufender Zirkulationsströmungen zu mindern. Während die Maßnahme an den Anschlüssen der WP sofortigen Erfolg zeigte, blieb dieser bei den Anschlüssen der Frischwasserstation aus. Bei genauener Untersuchung stellte sich heraus, dass die Regelung der Frischwasserstation offensichtlich einen regelmäßigen Pumpenimpuls auf der Primärseite des WÜT vorsieht, der nicht abzustellen war und somit auch nicht durch Rückschlagventile verhindert werden kann. Eine erneute analytische Ermittlung des UA-Werts des Speichers nach Durchführung der Maßnahme ergab 5.8 W/K, was eine Minderung der Verlustrate um 25 % bedeutet und unter den gegebenen Umständen zufriedenstellend ist.

Im weiteren Betrieb sind für ein weiteres vollständiges Jahr Messdaten aufgenommen worden (April 2016 bis März 2017), bei denen die Wärmeversorgungsanlage bis auf ein Update der Reglersoftware zur Beseitigung eines Softwarefehlers - unangestastet gearbeitet hat. Auch die Bewohner haben zu dieser Zeit keine Anweisungen für besonderes Nutzerverhalten bekommen. Nachfolgende Tabelle 4-5 zeigt den
Vergleich der bereits eingeführten Auswertegrößen für die zwei vorliegenden Messjahre 2015/16 und 2016/17 sowie die Jahresmitteltemperatur und Einstrahlung zur Beurteilung der meteorologischen Randbedingungen.

<table>
<thead>
<tr>
<th></th>
<th>Messung 2015/16</th>
<th>Messung 2016/17</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahresmitteltemperatur</td>
<td>10,3 °C</td>
<td>10,6 °C</td>
<td>+3 %</td>
</tr>
<tr>
<td>Einstrahlung (45°)</td>
<td>1146 kWh/m²</td>
<td>1195 kWh/m²</td>
<td>+4 %</td>
</tr>
<tr>
<td>Gradtagzahl</td>
<td>3382</td>
<td>3263</td>
<td>-4 %</td>
</tr>
<tr>
<td>Solarertrag gesamt</td>
<td>8525 kWh</td>
<td>8971 kWh</td>
<td>+5 %</td>
</tr>
<tr>
<td></td>
<td>(274 kWh/m²)</td>
<td>(288 kWh/m²a)</td>
<td></td>
</tr>
<tr>
<td>In BTA EG</td>
<td>1949 kWh (23 %)</td>
<td>1379 kWh (15 %)</td>
<td>-29 %</td>
</tr>
<tr>
<td>In BTA OG</td>
<td>2150 kWh (25 %)</td>
<td>1800 kWh (20 %)</td>
<td>-16 %</td>
</tr>
<tr>
<td>In Speicher</td>
<td>2844 kWh (33 %)</td>
<td>3258 kWh (36 %)</td>
<td>+15 %</td>
</tr>
<tr>
<td>In GHX</td>
<td>1295 kWh (15 %)</td>
<td>2188 kWh (24 %)</td>
<td>+69 %</td>
</tr>
<tr>
<td>Solare Deckung</td>
<td>52 %</td>
<td>47 %</td>
<td>-10 %</td>
</tr>
<tr>
<td>Wärme WP → Speicher</td>
<td>6438 kWh</td>
<td>7149 kWh</td>
<td>+11 %</td>
</tr>
<tr>
<td>Strombedarf gesamt</td>
<td>2173 kWh</td>
<td>2380 kWh</td>
<td>+10 %</td>
</tr>
<tr>
<td>JAZ WP</td>
<td>3,45</td>
<td>3,40</td>
<td>-1 %</td>
</tr>
<tr>
<td>Nutzwärme RH (Rad)</td>
<td>5369 kWh</td>
<td>6394 kWh</td>
<td>+20 %</td>
</tr>
<tr>
<td>Nutzwärme TWW</td>
<td>994 kWh</td>
<td>885 kWh</td>
<td>-11 %</td>
</tr>
</tbody>
</table>

Der Solarertrag ist im zweiten Messjahr 5 % höher als im ersten, der spezifische Kollektorertrag steigt auf 288 kWh/m²a. Die Verteilung des Solarertrags auf die drei möglichen Senken gestaltet sich jedoch unterschiedlich. Im ersten Messjahr wird etwa die Hälfte des gesamten Solarertrags an die BTA geliefert, im zweiten Messjahr ist es nur etwas über einem Drittel. Der Grund hierfür ist die geringere Einstrahlung in den Zeiten mit Heizbedarf, besonders in den Wintermonaten. Zusätzlich führt der extrem warme September dazu, dass hier abweichend zur ersten Messphase nur gar kein Wärmebedarf im Gebäude auftritt. Der Wärmebedarf konzentriert sich also stärker auf die Kernwintermonate, in denen die BTA wegen der geringeren Einstrahlung aber weniger Leistung erbringen kann, als während der ersten Messphase.

Dem gegenüber steht ein Mehrertrag in den Pufferspeicher, der sich eher in einer höheren mittleren Speichertemperatur gegenüber der ersten Messphase wiederspiegelt (56 °C während Messphase 1, 63 °C während Messphase 2) als in einer höheren Wärmeabnahme. Ebenfalls deutlich zugenommen hat die Abgabe von Über-
Abschlussbericht Projekt SH-T-Opt Exp

Institut für Solarenergieforschung Hameln/Emmerthal und HELMA Eigenheimbau AG

schusswärme an das Erdreich. Dies deutet ebenfalls auf den tendenziell höheren sommerlichen Strahlungseinfall hin und hängt auch unmittelbar mit dem besonders warmen und strahlungsreichen September zusammen.

Trotz des höheren solaren Gesamtertrags ist die solare Deckung mit 47 % geringer als in der ersten Messphase. Dies begründet sich vor allem durch die ebenfalls gestiegene Wärmelieferung der WP. Der hohe Anteil an Wärmelieferung an das Erdreich spielt ebenso eine Rolle, da dieser zum Gesamtertrag gezählt, aber nicht in der solaren Deckung berücksichtigt wird.

Der Strombedarf der WP steigt etwa im selben Maße wie die gelieferte Wärmemenge, die JAZ verringert sich geringfügig. Durch den etwas kälteren Winter und die gestiegene Wärmeanforderung der Nutzer steigt der Raumheizbedarf des Gebäudes um 20 % während der tendenziell ohnehin geringe Bedarf für Trinkwarmwasser nochmals um etwa 100 kWh fällt.

4.4.1 Vergleich mit Simulationsergebnissen

Nachfolgend werden die Daten des zweiten Messjahrs den Ergebnissen der Systemsimulationen analog zum Vorgehen in Abschnitt 4.2.1 gegenübergestellt. Auch hier erwies sich das Jahr 1994 des Standorts Hannover für die Simulation als geeignete Datenbasis für den repräsentativen Vergleich zu den gemessenen Daten. Den Erkenntnissen aus Abschnitt 4.2.1 folgend ist die Effektivität des Verschattungssystems (bei aktivierter Verschattung) von 75 % auf 25 % reduziert worden, um so die im realen Gebäude fehlenden oder weniger effektiven Verschattungseinrichtungen zu berücksichtigen. Die Luftwechselrate von 0,4 h⁻¹ ist beibehalten worden. Die Ergebnisse der Simulationen sind in Tabelle 4-6 den Messergebnissen gegenübergestellt.

<table>
<thead>
<tr>
<th>Vergleich der Simulationsergebnisse des Jahres 1994 als vergleichbares meteorologisches Jahr mit denen der Messung aus 2016/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messung 2016/17</td>
</tr>
<tr>
<td>Solarertrag gesamt</td>
</tr>
<tr>
<td>In BTA EG</td>
</tr>
<tr>
<td>In BTA OG</td>
</tr>
<tr>
<td>In Speicher</td>
</tr>
<tr>
<td>In GHX</td>
</tr>
<tr>
<td>Solare Deckung</td>
</tr>
<tr>
<td>Wärme WP → Speicher</td>
</tr>
<tr>
<td>Strombedarf gesamt</td>
</tr>
<tr>
<td>JAZ WP</td>
</tr>
<tr>
<td>Nutzwärme RH (Rad)</td>
</tr>
<tr>
<td>Nutzwärme TWW</td>
</tr>
</tbody>
</table>

Wie zu erkennen ist, liegt der simulierter Gesamtsolarertrag 12 % niedriger als der gemessene. Der Grund dafür liegt wieder in der Verteilung der Solarwärme auf die unterschiedlichen Senken. Während die BTA in der Simulation knapp 30 % mehr
Energie bekommt, wird etwa 30 % weniger Energie an den Speicher und sogar 50 %
weniger an das Erdreich geliefert. Da sich jedoch gleichzeitig auch die Wärmeliefe-
run der WP an den Speicher reduziert, resultiert bei der Simulation in Summe eine
solare Deckung von 48 %, die damit nahe der Deckung aus den Messdaten liegt.

Wie schon in Abschnitt 4.2.1 erläutert, führt die in der Simulation bessere Speicher-
anbindung der WP durch höhere Schichtungseffizienz zu einer um 8 % höheren JAZ.
In der zweiten Messphase liegt die energetisch gemittelte Eintrittstemperatur vom
Raumheizbereich des Speichers an die WP simuliert um 11 K geringer als nach
Messungen (33 °C simuliert gegenüber 44 °C gemessen).

Der Strombedarf für die gesamte Wärmeversorgung liegt folglich mit 2380 kWh etwa
10 % über dem simulierten Strombedarf. Der spezifische Endenergiebedarf ist mit
8,1 kWh/m²a etwas höher als im ersten Messjahr, jedoch noch immer auf einem sehr
geringen Niveau.

Das nachfolgende Diagramm in Abbildung 4.8 zeigt die Solarerträge in Speicher und
BTA für Messungen und Simulationen. Für die Simulationen sind in den Diagrammen
unterschiedliche Randbedingungen für Lüftung und Verschattung, entsprechend der
Analyse der Ergebnisse aus Abschnitt 4.2.1, variiert worden:

- Standardwerte wie auch in den Simulationen in Abschnitt 4.2.1: Luftwechselra-
te 0,4 h⁻¹; Verschattungseffektivität 75 %
- Verminderte Verschattungseffektivität: Luftwechselrate 0,4 h⁻¹; Verschat-
tungseffektivität 25 %
- Verminderte Verschattungseffektivität und Luftwechselrate: Luftwechselrate
 0,3 h⁻¹; Verschattungseffektivität 25 %

Der Vergleich der Erträge in Abbildung 4.8 bestätigt grundlegend die Schlussfolge-
rungen aus Abschnitt 4.2.1 (vgl. Abbildung 4.5). Dort war die Vermutung, dass eine in
der Simulation verwendete hohe Verschattungseffizienz zusammen mit einer Luft-
wechselrate von 0,4h⁻¹ das Potential für die solare BTA in der Praxis überbewertet.
Die hier gezeigten Simulationsergebnisse machen deutlich, dass sowohl bei Redu-
zierung der Verschattungseffizienz als auch bei Senkung der Luftwechselrate eine
Abnahme des Ertrags in die BTA und eine Zunahme des Ertrags in den Pufferspei-
cher verzeichnet werden kann. Bei entsprechenden Annahmen sinkt auch der solare
Gesamtertrag. Eine reduzierte Verschattungseffizienz auf 25 % und eine nicht verän-
derte Luftwechselrate führen bei den Summen der Solarerträge in Speicher und BTA
to einer Abweichung von nur noch 100 kWh.

Tendenzial ist der simulierter Ertrag in die BTA weiterhin größer als bei der Messung,
wo die Energielieferung an die BTA fast gleich groß dem Speicherertrag ist. Eine Ur-
sachensuche in der Experimentalanlage brachte zum Vorschein, dass der Regelfüh-
ler der BTA im EG aufgrund eines Defekts höhere Temperaturmesswerte an den
Regler übermittelte, als tatsächlich vorlagen. Im Nachhinein ist anhand der Messda-
ten nachvollzogen worden, dass dieser Fehler etwa am Anfang der zweiten Mess-
phase erstmalig aufgetreten ist. Das Resultat ist eine verminderte Versorgung der
BTA im EG, was vermutlich einen deutlichen Teil der Ertragsminderungen beim BTA Betrieb erklärt.

Abbildung 4.8: Vergleich monatlicher Solareinträge in Speicher und BTA laut Messung und für Simulationen mit unterschiedlichen Luftwechselraten und Verschattungseffizienz
5 Konzeptbewertung

5.1 Technische Bewertung

Die Ergebnisse zeigen, dass die theoretische Konzeption sich auch im praktischen Einsatz bewährt und wie geplant funktioniert. Das bestätigt der sehr geringe Endenergiebedarf von 7 kWh/m²a bis 8 kWh/m²a, der sehr nah am Erwartungswert der Systemsimulationen liegt. Obgleich das zweite Messjahr mit etwas geringerer Effizienz zu Ende ging als das erste, sind die Effizienzminderungen doch durch Komponentendefekte erklärbar und nicht in einer Fehlkonzeption begründet. Vielmehr zeigt sich im zweiten Messjahr der Einfluss von Nutzerverhalten und Wettergeschehen auf das Systemverhalten. Trotz etwas höherem Gesamtstrahlungsenertrag und etwa gleichen sonstigen meteorologischen Randbedingungen sinkt die solare Deckung während der Endenergiebedarf etwas steigt. Als meteorologischen Grund dafür kann der vergleichsweise kalte und strahlungsarme Winter angeführt werden, der die solaren Erträge in die BTA merklich mindert. Diese Beobachtungen sind auch bei Simulationen mit elf Jahreswetterdatensätzen des Standorts Hannover in Kapitel 3.1 gemacht worden. Sie gehören also zum erwartungsgemäßen Anlagenbetrieb.

Diese Fürsprache für ein flächendeckendes Monitoring soll jedoch nicht darüber hinweg täuschen, dass das hohe Maß an Systemkomplexität des neuen Sonnenhauskonzepts auch eine größere Gefahr für Fehler bei der Planung und dem Bau der Anlage birgt. Es bedarf eines gewissen Maßes an Erfahrung und Sorgfalt, um die Komponenten und Anlagenbestandteile bestmöglich zu planen, zu installieren und in
Betrieb zu nehmen. Dabei ist eine beständige Qualitätskontrolle genauso unerlässlich wie eine regelmäßige Absprache verschiedener Gewerke untereinander. Dies gilt insbesondere bei Gewerke übergreifenden Aufgaben wie der kostengünstigen Realisierung der BTA oder der Vorbereitung und Installation des EWK.

Besser ist es noch, ein gleich oder fast gleich effizientes Konzept zu entwickeln, dass mit deutlich weniger Systemkomplexität auskommt. Einen vielversprechenden Ansatz für das neue Sonnenhauskonzept hat eine Simulationsstudie von (Glembin 2016) geliefert. Die Ausführungen dazu sind auch im Anhang dieses Berichts zu finden. Die dort beschriebenen Möglichkeiten zur Systemvereinfachung bei gleicher Leistungsfähigkeit haben das Potential sowohl die Berührungsängste seitens Planern und Installateuren als auch die Kosten (siehe Kapitel 5.2) weiter zu senken.

Wegen des Betriebs des Heizsystems auf extrem niedrigen Temperaturniveaus bietet sich zudem die Kombination mit Wärmepumpen naturgemäß an. Der synergetische Vorteil bei der Verbindung von Sonnen- und Erdwärmepekollektor ist signifikant, da sowohl sommerliche Kollektorstagnation als auch winterliche Überlast des EWK vermieden werden können. Theoretische Simulationen (Kapitel 3.2) und praktische Versuche (Kapitel 4.3) konnten belegen, dass diese Kombination eine erhebliche Verkleinerung des EWK ermöglicht ohne die Effektivität oder die Betriebssicherheit der Anlage zu mindern. Kleine Grundflächeflächen sind somit kein Ausschlusskriterium mehr für die Nutzung oberflächennaher horizontaler EWK.

5.2 Wirtschaftliche Bewertung

Zu Beginn des Forschungsvorhabens ist das gemeinsame Ziel formuliert worden, die sonnenhausspezifischen Systemkosten der Wärmeversorgung mit dem neuen Konzept (SH2) gegenüber dem Standard Sonnenhauskonzept (SH1) um mindestens 25 % zu reduzieren. Zur Ermöglichung des Kostenvergleichs unterschiedlicher Systeme ist die Firma Corona Solar, die bereits die Wärmeversorgung des Experimentalgebäudes geplant und realisiert hat, beauftragt worden, das Gebäude in Hannover

Das zum Vergleich herangezogene Standard Sonnenhauskonzept entspricht dem des Musterhauskonzepts der Firma HELMA und ist mit einem großen, zentralen Wasserspeicher (ca. 7 m³) und einem 20 kW Holzofen ausgestattet. Das neue Systemkonzept entspricht der in diesem Bericht beschriebenen Ausstattung des Experimentalgebäudes. Es ist sowohl entsprechend der realen Umsetzung im Experimentalgebäude als auch in einer optimierten Form kalkuliert worden. Die Optimierung sieht im Wesentlichen die Zusammenlegung der rein solarthermischen Bauteilaktivierung und des konventionellen Radiatorheizsystems in einer gemeinsam genutzten Fußbodenheizung vor, wie es zur Systemvereinfachung bereits im vorangegangenen Kapitel erwähnt und in (Glembin 2016) beschrieben wird. Die Systeme für den Kostenvergleich sind energetisch gleichwertig dimensioniert und in Abbildung 5.1 bildlich dargestellt.

Abbildung 5.1 Sonnenhauskonzepte im Vergleich der Systemkosten, links das Standard (SH1), rechts das neue Sonnenhauskonzept (SH2), das Seriengebäude kommt standardmäßig ohne Keller

Für die verschiedenen Systemkonzepte (ohne Keller) ergeben sich die nachfolgenden Kosten:
Tabelle 5-1: Kostenvergleich der unterschiedlichen Sonnenhaussysteme im direkten Vergleich

<table>
<thead>
<tr>
<th></th>
<th>SH1 Standard Konzept</th>
<th>SH2 Neues Konzept</th>
<th>SH2 Optimiertes Konzept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachheizung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wärmepumpe</td>
<td>0,00 €</td>
<td>9.668,50 €</td>
<td>9.668,50 €</td>
</tr>
<tr>
<td>Holzofen</td>
<td>8.251,60 €</td>
<td>0,00 €</td>
<td>0,00 €</td>
</tr>
<tr>
<td>Kollektor & Kreis</td>
<td>29.956,20 €</td>
<td>16.934,50 €</td>
<td>16.934,50 €</td>
</tr>
<tr>
<td>Speicher/BTA/Regelung</td>
<td>19.563,60 €</td>
<td>12.206,40 €</td>
<td>8.023,80 €</td>
</tr>
<tr>
<td>Trinkwarmwasser (TWW)</td>
<td>2.162,50 €</td>
<td>2.184,10 €</td>
<td>2.184,10 €</td>
</tr>
<tr>
<td>Raumheizung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heizkörper</td>
<td>0,00 €</td>
<td>8.297,00 €</td>
<td>0,00 €</td>
</tr>
<tr>
<td>Fußbodenheizung</td>
<td>7.833,10 €</td>
<td>0,00 €</td>
<td>7.833,10 €</td>
</tr>
<tr>
<td>Summe</td>
<td>67.767,00 €</td>
<td>49.290,50 €</td>
<td>44.644,00 €</td>
</tr>
</tbody>
</table>

Abbildung 5.2 zeigt die relativen Systemkosten der Sonnenhauskonzepte im Vergleich, bezogen auf die Kosten des Standard Sonnenhaussystems, das als Referenz dient.

Abbildung 5.2: Relative Systemkosten, bezogen auf das Standard Sonnenhauskonzept (SH1, links) im Vergleich zum neuen Sonnenhaus (SH2) entsprechend dem Experimentalgebäude ohne Keller (Mitte) und mit optimierter Systemausführung (rechts)

Der beschriebene Kostenvergleich betrachtet lediglich die Kosten der technischen Ausstattung für die unterschiedlichen Systeme und nicht den Bedarf an umbautem Raum im Gebäude. Da das neue Sonnenhauskonzept durch den viel kleineren Speicher auch deutlich weniger Platz im Gebäude belegt, ist deshalb von einem weiteren Kostenvorteil auszugehen.

Auch aus wirtschaftlicher Sicht steht damit unserer Einschätzung nach der weiteren Entwicklung und Verbreitung des neuen Konzeptgedankens nichts im Weg. Eine Einschätzung des Konzeptpotentials durch die Firma HELMA erfolgt in Kapitel 7.4.
6 Projektorganisation

6.1 Veröffentlichungen und Präsentationen

Im Rahmen des Projektes sind zur Verbreitung der Ergebnisse die folgenden Beiträge auf Fachtagungen oder in Zeitschriften publiziert worden, z. T. in Verbindung mit Vorträgen.

6.2 Abschlussarbeiten

Im Rahmen des Projekts ist keine studentische Abschlussarbeit entstanden.
6.3 Projekttreffen

Folgende Treffen fanden im Rahmen des Forschungsvorhabens statt.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Ort</th>
<th>Teilnehmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.10.2015</td>
<td>HELMA in Lehrte</td>
<td>Rudolph (HELMA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glembin, Steinweg (ISFH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klingenschmidt (RESOL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hansen-Röbbel, Gerke (Corona-Solar)</td>
</tr>
<tr>
<td>17.08.2017</td>
<td>HELMA in Lehrte</td>
<td>Rudolph (HELMA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steinweg (ISFH)</td>
</tr>
</tbody>
</table>
7 Verwertbarkeit der Ergebnisse

7.1 Wirtschaftliche Erfolgsaussichten

Das Projekt und seine Ergebnisse sind ein wesentlicher Schritt, das neue Gebäudekonzept als Sonnenhaus der neuen Generation zur Serienreife zu bringen und von
der HELMA Eigenheimbau AG entsprechend vermarktet zu werden. Im Kapitel 7.4 nimmt die HELMA Eigenheimbau AG direkt Stellung hierzu.

7.2 Varianten im Systemkonzept

Optionen zur weiteren Reduktion der Kosten bestehen beim Wärmespeicher, beim Heizsystem und bei anderen Komponenten, die gegenüber der Ausführung im Experimentalgebäude wegfallen (z. B. weniger Unterverteilungen, Zusammenfassung von Pumpengruppen, etc.) oder kostengünstiger ausgeführt werden können. Eine deutliche Reduktion der Komplexität im System ist durch die Vermeidung von zwei Kreisläufen zur Raumheizung erreichbar, die auch eine Reduktion der Kosten mit sich bringt, wie in (Glembin 2016) beschrieben.

7.3 Wissenschaftlich-wirtschaftliche Anschlussfähigkeit aus Sicht des ISFH

Die drastische Reduktion der Erdwärmekollektorfläche (im Projekt ist etwa das 0,6-fache der Wohnfläche statt des 2-fachen realisiert worden) eröffnet ggf. neue Wege für erdreichbasierte Wärmepumpenquellen, ohne die Nachteile der bisherigen Erdwärmenutzungen. Auch kleine Grundstücke, auf denen aus ordnungsmäßigen oder grundwasserschutzrechtlichen Gründen Sondenbohrungen nicht zulässig sind, kommen für die Erdwärmennutzung in Frage. Voraussetzung ist hier stets die solare Regeneration und die winterliche Unterstützung der Quelle sowie eine grundsätzliche Eignung der Wärmepumpe für den sicheren Heizbetrieb bei Quellentemperaturen im unteren Grenzbereich.

Das aufgezeigte Kostensenkungspotential gegenüber bisherigen Sonnenhäusern sollte genutzt werden, um die Konzeptidee bis zur Serienreife weiterzuentwickeln und den Sonnenhausgedanken damit einer breiteren Käuferschaft zugänglich zu machen. Ein breit angelegter Feldtest des neuen Konzepts mit unterschiedlichen Ein-
satzorten und Anforderungen kann dazu beitragen, dessen Vorteile noch schärfer herauszuarbeiten und auf andere Anwendungsfälle übertragbar zu machen.

7.4 Anschlussfähigkeit aus Sicht der HELMA Eigenheimbau AG

Unter diesem Hintergrund hat sich die Firma HELMA entschlossen, das neue Konzept „SH-T-Opt“ nicht als Serienprodukt anzubieten, sondern weiterhin das bekannte herkömmliche Sonnenhaus zu vertreiben. Die Erfahrungen aus diesem Produkt werden auf jeden Fall genutzt um ein weiteres neues Konzept für die EU-Anforderungen (Niedrigstenergiegebäude / Nearly Zero Energy Builing) ab 2021 zu entwickeln.

7.5 Schutzrechtsanmeldungen

Im Projekt sind keine Schutzrechtsanmeldungen entstanden.
8 Literatur

Dott 2012

Glembin 2015

Glembin 2016

Hirsch 2016

Haller 2013

Leukefeld 2010

SoH-Institut 2016

Steinweg 2016

VDI 4640-2: 2001
Weiss 2003

Wilhelms 2008
9 Anhang

9.1 Tagungsbeiträge

Nachfolgend angehangene Tagungsbeiträge sind eine Auswahl der im Rahmen des Projekts entstandenen Veröffentlichungen:

Simulation and evaluation of solar thermal combi systems with direct integration of solar heat into the space heating loop, IEA Solar Heating and Cooling Conference Istanbul, 2015

Optimal connection of heat pump and solar buffer storage under different boundary conditions, IEA Solar Heating and Cooling Conference Istanbul, 2015

Erstes Betriebsjahr eines neuartigen Sonnenhauskonzepts - Messergebnisse und Simulationen, 27. OTTI Symposium Thermische Solarenergie, 2017

Neues Sonnenhauskonzept – Verbrauchen geht vor Speichern, Beitrag zur Tagung „Effiziente Gebäude 2017“

* Weniger ist manchmal mehr - Sonnenhäuser mit Bauteilaktivierung statt großem Speicher*, Beitrag zur „Effizienztagung Bauen+Modernisieren“ in Hannover, 2017
Simulation and evaluation of solar thermal combi systems with direct integration of solar heat into the space heating loop

Jens Glembin*, Thomas Haselhorst, Jan Steinweg and Gunter Rockendorf

Institut für Solarenergieforschung Hameln/Emmerthal (ISFH), Am Ohrberg 1, 31860 Emmerthal, Germany

Abstract

Usually, solar heat in combi systems is used via a buffer storage. In contrast to that, the solar collectors may be connected directly to the space heating circuit in order to store the heat in the building itself. Such a direct solar integration is investigated within system simulations for different layouts and heating elements. The simulations show significant reductions in the final energy demand as well as an increasing solar yield due to less thermal losses of the storage tank compared to the usual solution with one buffer storage. A prototype of one of the investigated heating concepts within a single family house proofs the functionality of the system concept and the high solar yield, particularly at low radiation levels. Since only a few manufacturers provide such system solutions with a direct solar integration, the results may have an important impact on the future development of combi systems.

© 2015 The Authors. Published by Elsevier Ltd.
Peer-review by the scientific conference committee of SHC 2015 under responsibility of PSE AG.

Keywords: System simulation; solar thermal combi system; direct integration; heat pump; buffer storage; floor heating; thermal activation

1. Introduction

Within solar thermal combi systems the solar heat is usually utilized via a buffer storage, see e.g. [1]. Such a storage has the advantage that the solar heat may be stored for periods without or insufficient irradiation, respectively. However, the solar yield and its effect on the end energy savings is reduced due to the necessarily higher collector temperature and the thermal losses of the storage tank. Alternatively, the solar heat may be used directly within the space heating loop. In the context of an on-going project a system with such a direct integration was developed for a

* Corresponding author. Tel.: +49-5151-999-647; fax: +49-5151-999-600.
E-mail address: glembin@isfh.de

1876-6102 © 2015 The Authors. Published by Elsevier Ltd.
Peer-review by the scientific conference committee of SHC 2015 under responsibility of PSE AG.
building with a solar fraction above 50 %, where the solar heat may be used directly within a thermal activation of the concrete floor slabs. System simulations according to [2] and measured results of a test house reveal the functionality and high performance of this system. Based on this concept advanced system layouts are developed differing in the type of solar integration and the heat distribution elements. All these concepts are investigated and evaluated within a comprehensive simulation study.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Collector</td>
</tr>
<tr>
<td>FH</td>
<td>Floor heating</td>
</tr>
<tr>
<td>f<sub>Sol</sub></td>
<td>Solar fraction</td>
</tr>
<tr>
<td>HP</td>
<td>Heat pump</td>
</tr>
<tr>
<td>Q</td>
<td>Heat amount (kWh)</td>
</tr>
<tr>
<td>Rad</td>
<td>Radiator</td>
</tr>
<tr>
<td>TA</td>
<td>Thermal activation</td>
</tr>
</tbody>
</table>

2. System concepts

System simulations are carried out to analyze and evaluate several solar thermal combi systems. Within these concepts the solar heat is distributed via a buffer storage and/or directly to the heat distribution elements. Integrated into a full system layout such “direct systems” are analyzed within the simulation environment TRNSYS 17 [3]. As a reference, typical combisystems with only one buffer tank are considered (named “buffer system”). Both systems may be equipped with different heat distribution elements – radiators, floor heating or thermal activation of concrete elements. The investigation also includes the aforementioned solar active house concept with a combination of two types of heating elements, a thermal activation directly heated by the solar thermal collector and radiators solely heated by the auxiliary heater via the buffer storage (named Rad + TA). All systems are shown in Fig. 1.

Fig. 1. Layout schemes of the systems investigated
The heat distribution elements play an important role for the evaluation of the direct solar space heating and differ in heat transfer rate, design temperature and storage capacity. Three heating elements are considered in the investigation. While radiators are heat emitters placed in the heated zones of the building, thermally activated building systems are integrated in the building structure itself. A very common form is a floor heating system (FH) where water pipes are embedded in the upper layer of the floor construction in contrast to a thermal activation (TA). Here, the piping is installed deeper in the floor e.g. in the center of the concrete. The large surface area of FH and TA allows a significantly lower operation temperature level compared to radiators which affects both the solar yield and the performance of the auxiliary heater.

Within the simulations, a heat pump and a borehole heat exchanger are used as the auxiliary heater in all systems. The heat pump is charging solely the buffer storage which is used for space heating and domestic hot water preparation. For decreasing the average condenser temperature and thus enhancing the heat pump performance, the auxiliary zone in the buffer storage is divided into two parts for domestic hot water (constant set temperature of 50 °C) and space heating (variable temperature according to the heating curve). In addition, the connection of heat pump and storage (in-/outlet heights, set temperature, sensor positions, condenser flow rate) is realized according to the recommendations of [4] to give an optimum heat pump performance.

Apart from the heat pump, the system performance is also calculated assuming a gas boiler as auxiliary heater. Alternatively to further system simulations with a boiler model, the energy consumption of such systems is calculated with the simulated auxiliary heat demand and an estimated boiler performance based on efficiency measurements carried out in the lab [5].

The control within the system decides whether the solar collector is operated and where its heat is used. In the buffer system, the solar collector is charging one heat sink, which requires only a simple on/off controller. In the system “direct solar” and the Rad + TA system the solar collector is working alternatively on two heat sinks with different temperature levels. Therefore, the controller determines the potential collector conditions for all heat sinks in advance, i.e. the conditions that would occur if the collector would charge the respective heat sink. By comparison of the potential collector outlet temperature and current heat sink temperature (e.g. temperature in the storage tank) the controller is able to decide if charging of the respective heat sink is recommended. In addition, the controller has to decide which heat sink will be used if more than one demand signal is positive. Here, the controller does not use a constant priority on one of the heat sinks. Instead, the decision bases on the potential collector output power calculated with the potential collector outlet temperatures. The solar collector charges the heat distribution elements directly, if the potential output in this mode exceeds the potential gain of the buffer storage charging by a defined factor. The optimal factor (with the lowest energy demand of the whole system) depends on the system design and has been determined with simulations for all system concepts. Details about this method are published in [6].
3. Methodology

The systems presented in Section 2 are simulated under the boundary conditions shown in Table 1.

Table 1: Boundary conditions for the simulations in TRNSYS

<table>
<thead>
<tr>
<th>Data</th>
<th>TRNSYS Type/Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Zurich, Switzerland</td>
</tr>
<tr>
<td>Building</td>
<td></td>
</tr>
<tr>
<td>Heated area</td>
<td>180 m²</td>
</tr>
<tr>
<td>Heat demand</td>
<td>7600 kWh/a (constant infiltration rate 0.4 h⁻¹/20 °C room temperature)</td>
</tr>
<tr>
<td>Heat distribution elements</td>
<td></td>
</tr>
<tr>
<td>Radiators</td>
<td>55 °C/45 °C at -14 °C ambient temperature</td>
</tr>
<tr>
<td>Floor heating</td>
<td>35 °C/30 °C at -14 °C ambient temperature</td>
</tr>
<tr>
<td>Thermal activation</td>
<td>27 °C/24 °C at -14 °C ambient temperature</td>
</tr>
<tr>
<td>Domestic hot water demand</td>
<td>2200 kWh/a</td>
</tr>
<tr>
<td>Collector</td>
<td>32 m² selective flat plate collector/tilted 45°, south</td>
</tr>
<tr>
<td>Storage tank</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>1000 l / 3000 l</td>
</tr>
<tr>
<td>Heat loss rate</td>
<td>Insulation 0.1 m with 0.037 W/mK, overall heat loss 4.1 W/k</td>
</tr>
<tr>
<td>Heat pump</td>
<td>Heating power 8.1 kW (condenser output), COP 4.8</td>
</tr>
<tr>
<td>Working point B0/W35 (DIN EN 255)</td>
<td></td>
</tr>
<tr>
<td>Volume flow rates</td>
<td></td>
</tr>
<tr>
<td>Evaporator</td>
<td>1.9 m³/h, condenser 0.7 m³/h</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Heat up constant 30 s, cool down constant 5 min, minimum turn-off time 10 min</td>
</tr>
<tr>
<td>Electrical Heater</td>
<td>Power 7 kW</td>
</tr>
<tr>
<td>Heat source</td>
<td>Borehole with 70 m depth</td>
</tr>
</tbody>
</table>

The main evaluation value is the overall energy consumption of the system including pumps and controllers, which in case of heat pump systems is solely an electricity consumption. In addition to the burners’ gas consumption, the energy demand in the boiler system includes also the electricity consumed by the circulation pumps. For comparable results all electricity values are multiplied with a factor of 2.5.

The solar fraction defined in Eq. (1) is determined by the solar input, which considers the whole solar heat to storage and space heating circuit as valuable.

\[f_{\text{Sol}} = \frac{Q_C}{Q_C + Q_{\text{HP}}} = \frac{Q_{C,\text{Storage}} + Q_{C,\text{Direct}}}{Q_{C,\text{Storage}} + Q_{C,\text{Direct}} + Q_{\text{HP}}} \tag{1} \]

This definition leads to higher \(f_{\text{Sol}} \)-values if compared to definitions based on the demand of the building at constant inner temperature.
4. Results

4.1. Systems equipped with heat pump

Fig. 2 shows the solar fraction and the energy consumption of all seven systems depending on the collector area. In the diagram, the storage volume is fixed at 3000 l for the buffer systems and 1000 l for the direct and the Rad + TA systems. The direct heating mode is used until a room temperature of 24 °C, see Section 4.3.

The diagram in Fig. 2 allows a comparison of the system concepts:

- The solar fraction is higher in the systems with a direct integration of solar heat although the tank volume is three times larger in the buffer systems. An exception is the system with radiators with a low solar input in the direct mode due to the higher operating temperature. The heating element and its temperature level have a large impact on the solar heat input in the direct mode which is far less pronounced in the buffer systems.

- The solar input in the direct systems is used to increase the room temperature above the set value of 20 °C. Exemplarily in the case of floor heating, the average temperature in the heated zones during the heating period October to April is 20.5 °C to 20.6 °C in the buffer system and 20.6 °C to 21.8 °C in the direct system for collector areas of 10 to 60 m². Since the higher room temperatures also increase the heat losses of the building, the additional solar heat only partly lowers the energy consumption. At a collector area of 10 m² there is only a small improvement with the direct charging mode but already at collector areas above 20 m² the direct systems perform considerably better.

- If floor heating is used, the energy consumption of buffer and direct system is almost identical. Based on a buffer system with 1000 l, the energy consumption may be reduced in the same magnitude by a three times larger buffer storage or by integrating the direct heating mode. With TA the direct system results even in a lower energy consumption than the buffer system especially at larger collector areas.

- With radiators the direct mode leads to a higher energy consumption than the buffer system while the system Rad + TA shows a better system performance than both radiator systems. However, the system Rad + TA has considerably higher energy consumptions than the other systems with FH or TA.
4.2. Systems equipped with gas boiler

The type of auxiliary heater affects the energy consumption and thus has a significant impact on the system performance. According to the method explained in Section 2, the simulation results are used to estimate the performance within the concepts if equipped with a condensing gas boiler. Compared to heat pumps, the performance of such a boiler is less dependent on the storage temperature level. Fig. 3 shows the solar fraction and the energy consumption for the same system configurations as in Fig. 2. Since the calculation method only affects the auxiliary energy consumption, the values for the solar fraction are identical.

![Diagram showing solar fraction and energy consumption for systems with different collector areas and storage volumes for systems equipped with a boiler.](image)

Fig. 3: Solar fraction (left) and energy consumption (right) of the systems with different collector areas and one storage volume for the systems equipped with a boiler, energy consumption of the reference buffer system without any solar collectors and a smaller storage tank of 300 l: 11060 kWh (Rad), 11320 kWh/a (FH), 11660 kWh/a (TA)

The diagram shows significant differences compared to the heat pump systems:

- The energy consumption increases since no heat from the ground is used for auxiliary heating. With radiators, the surplus is around 60 % while it reaches 100 % in the case of TA and FH. Due to the behavior of the boiler, the systems’ energy consumption is much less influenced by the space heating operation temperature which reduces the differences in energy consumption between the system concepts.
- The space heating type influences the solar yield and the amount of heat necessary for space heating. Since a low space heating temperature does not improve the boiler efficiency significantly, these effects are more dominant. Due to a higher heat demand of the boiler, the performance of the TA buffer system is worse than the radiator buffer system.
- Like in the heat pump systems, the direct radiator system has the lowest solar fraction and the highest energy consumption. In contrast, the Rad + TA system with its lower space heat demand and a high solar yield reveals the lowest energy consumption at collector areas above 10 m².

In conclusion, the boiler is less affected by the space heating temperature level leading to a better performance of the systems equipped with radiators. However, the space heating operating temperature still influences the collector performance, especially in the direct systems. This is seen in the low performance of the direct radiator system at higher collector areas. If radiators are used, the implementation of a solar heated thermal activation (system Rad + TA) leads to a much higher energy reduction which also outperforms an increase of the storage volume to 3000 l (system buffer Rad).
4.3. Increasing the room temperature

Systems with a direct solar heating mode use the building itself as an additional storage for solar heat. In order to avoid an overheating of the rooms, the direct mode is only active if the room temperature is below a preset maximum comfort temperature, basically set to 24 °C. With a higher temperature limit, the solar heat stored within the building may be increased while a lower temperature would reduce the direct solar input. These effects are analyzed by varying the maximum room set temperature between 20 °C and 27 °C; 20 °C represents the room set temperature for the usual heating mode via the buffer storage. Fig. 4 shows the results exemplarily for the FH direct system and the system Rad + TA, each equipped with a collector area of 30 m² and a buffer storage of 1000 l.

![Graph showing the relationship between maximum room temperature and solar heating efficiency](image)

Fig. 4: Variation in the maximum room temperature for the direct solar charging mode for the systems FH direct and Rad + TA: Share of the direct solar heating compared to the overall collector yield, reduction in space heat demand via buffer storage compared to the system without direct solar heating and energy savings compared to the variant with a limit of 20 °C.

The diagram shows an increasing share of direct solar heating if a higher room temperature limit is used. In maximum, the direct solar yield reaches more than 60 % in case of the system FH direct and almost 70 % in case of the system Rad + TA. The latter has a higher direct solar input since the solar thermal activation is operated independently from the radiators which is not possible in the direct systems.

Although the direct solar input also increases at temperature limits above 24 °C, the change in the space heat demand is small. Likewise, the energy savings only increase up to a temperature limit of 24 °C, above that value the energy consumption almost stagnates. Therefore, a set value of 24 °C is a sufficient upper value for storing the maximum of useful solar heat within the building. In addition to that, the hours of uncomfortably high room temperatures above 27 °C increase at temperature limits above 24 °C while remaining unchanged at limits of 24 °C or below.
5. Conclusions of the system simulations

The investigation compares the simulated energetic performance of direct solar heating systems with standard concepts of solar combisystems. The direct integration is able to increase the solar fraction significantly, if an element with low operation temperatures is used for space heating. In combination with radiators and high operation temperatures, the direct charging is not recommended. Compared to a buffer system, the direct mode increases the solar yield only at smaller buffer storage volumes. In case of a larger buffer storage, the direct mode is competing with the storage charging. In such a system the solar yield increases only slightly and the solar heat is distributed to both heat sinks. Thus, the maximum reachable solar fraction at a given collector area can only slightly be increased by the direct integration. However, a high solar fraction can be reached with a smaller storage volume.

Fig. 2 shows that a solar fraction of 50 % based on a buffer FH system with 30 m² and 1000 l can either be reached by a larger storage tank of 3000 l or the implementation of the direct mode. Compared to that, a system including both measures – a larger storage tank and the direct charging mode – does not lead to a considerable improvement and is not recommended. The direct solar space heating uses the building as storage.

Instead of the heat pump, a condensing gas boiler may be used as auxiliary heater. Due to the less pronounced efficiency dependence on the inlet temperature the space heating type and its operation temperature have a lower impact on the system performance. With such an auxiliary heater the system Rad + TA performs best, since the solar heat can be used independently of the conventional heating system.

Apart from the energy consumption, the concepts may also be evaluated concerning factors like system costs, complexity and comfort. During summer, the solar thermal system may affect the comfort by inducing higher room temperatures. The direct solar charging of the heat distribution element primarily takes place in the heating period (characterized by the 24 h average ambient temperature being below 15 °C) and higher temperatures are avoided due to a maximum room temperature for direct charging (see Section 4.3). On the contrary, the heat losses of the solar buffer storage occur in the whole year and reach the highest amount in summer when the storage tank is often charged to its maximum set value.

The system complexity is an indicator for the installation effort and error-rate and also affects the frequency of failures during operation. The complexity is defined by the hydraulics and the control. The hydraulic connections in the buffer system are simple and mature requiring one heat exchanger in the solar loop. The additional effort in the direct system compared to the buffer system is comparably low requiring one diverter after the heat exchanger, a switching valve in front of the space heating circuit and a third solar circulation pump. In contrast, the direct systems require a control which not only operates the collector pump but also has to decide how the solar heat is used optimally – for storage charging or for direct space heating. Therefore, the control is more complex and features a lot of parameters which may be a source of errors. While the control in the Rad + TA system is similar to the direct systems, the system layout is more complex due to the two separate heating systems used.

The complexity also gives hints regarding the system costs. Within the buffer systems, the storage itself is the crucial component for the cost calculation. The storage has to be large in order to reach a high solar yield. For high solar fractions around 50 % and more, the storage volume has to be 3000 l at minimum. Such a storage is expensive and not easy to integrate into the building. The storage can be smaller in the direct systems reducing the costs for this component, especially if a high solar fraction is favored. The costs for the additional components are low, only the complex control and its sensors may be less cost-efficient. The storage volume may also be reduced in the Rad + TA system. However, the two parallel heating elements lead to significantly higher costs compared to the direct systems.
6. Prototype

A prototype building was built in order to gain practical experiences with the direct integration of solar heat in the space heating circuit. The concept realized corresponds to the Rad + TA system according to Fig. 1. Within an experimental stage, the main adjustments of the solar heated thermal activation and its control are analyzed in detail. Since the building is inhabited, effects on the room comfort have to be excluded. Here, the Rad + TA system has the advantage that both heating systems are charged independently, ensuring that the room temperature always reaches the value set by the inhabitants.

The solar thermal system of the prototype building has the aim to contribute at least 50 % to the overall heat demand. For such a so-called solar active house, the Rad + TA system represents a cost-efficient alternative to the usual concepts with a large storage tank with volumes of 5-10 m³ in single family houses [2]. In order to reach the high solar yield, the building has a flat plate collector with an area slightly above 30 m² but, according to the system concept, only a buffer storage volume of 1000 l. The building itself has three stories (heated area 270 m²) and a comparatively high insulation standard with a specific space heat demand of 45 kWh/m²a (according to pre-calculations during the planning process). The ceiling between cellar and ground floor as well as the ceiling between ground and first floor are activated via pipes embedded in the concrete. A heat pump is used as the auxiliary heater, receiving its heat from a horizontal ground heat exchanger. In contrast to the system layout described in Section 2, the collector is in addition used for charging the ground heat exchanger. This intermittent regeneration allows small GHE dimensions and reduces the collector stagnation hours. The control in the building is a further development of the variant presented in Section 2.4 including the regeneration mode.

The prototype was completed in spring 2015 in Hanover, Germany. Fig. 5 shows the building during construction and after the completion.

Fig. 5: Prototype building. Upper left: Implementation of solar thermal collectors, Upper right: Construction of thermal activation layer between cellar and ground floor, Lower left: Heating room after completion with data recording unit in the center, Lower right: Building after completion.
Within the prototype, the system concept Rad + TA has been installed successfully, the first measurements between April and November prove that the system operates as desired and that the direct mode leads to a high solar yield especially in the autumn months. The measurement period will continue for the next 15 months to gain more results especially including the winter performance.

Acknowledgements

The investigations are realized within the projects “SH-T-opt”, FKZ 0325981, and “SH-T-Opt Exp”, FKZ 0325559, which are carried out in cooperation with the companies HELMA Eigenheimbau AG and RESOL – Elektronische Regelungen GmbH and funded by the German Federal Ministry for Economic Affairs and Energy on the basis of a decision of the German Federal Parliament. The authors are grateful for the financial support. The content of this publication is in the responsibility of the authors.

References

[8] Holst S. Type 362 Dynamic radiator model with pipes (Type 162), Bayerisches Zentrum für angewandte Energieforschung e.V., München, Germany, 2010.
[13] Institut für Solarenergieforschung Hameln ISFH, TRNSYS Type 292: Component for heat pump to correct for different flow conditions in condenser or evaporator, 2013
Optimal connection of heat pump and solar buffer storage under different boundary conditions

Jens Glembin*, Christoph Büttner, Jan Steinweg and Gunter Rockendorf

Institut für Solarenergieforschung Hameln/Emmerthal (ISFH), Am Ohrberg 1, 31860 Emmerthal, Germany

Abstract

The paper presents the results of a simulation study, in which the connection of heat pumps and buffer storage tanks has been investigated. The simulations are carried out for a new type of a solar thermal combi system with a 32 m² collector field leading to a solar fraction of more than 50%. In the first stage, the most influencing installation and operation parameters have been identified and optimized for typical boundary conditions of weather/climate, hot water demand, building and space heating system. Within further simulations these boundary conditions are varied to find generalized design rules for the connection of heat pumps and storage tanks. These results are presented and discussed.

© 2015 The Authors. Published by Elsevier Ltd.
Peer-review by the scientific conference committee of SHC 2015 under responsibility of PSE AG.

Keywords: Heat pump; buffer storage; boundary conditions; solar active house; system simulation; solar fraction

1. Introduction

Heat pumps have a significant and increasing share in the European heating market, e.g. in Germany 9% of the heat generators in buildings installed in 2014 have been heat pumps [1]. In most applications, especially in space heating systems equipped with thermostatic valves, heat pumps are operated with a storage tank. The design of the storage and its connection to the heat pump has a significant influence on the performance of the heat pump and the whole system, see e.g. [2].

Within a comprehensive investigation, system simulations in TRNSYS are used to identify the optimum design of the connection between a heat pump and a solar buffer storage including total storage volume, number and size of...
heated zones, sensor and in- and outlet positions. These parameters are investigated within a new developed heat supply concept for solar active houses with a solar thermal fraction of more than 50%. The solar heat is either used in thermally activated concrete elements or within a buffer storage which distributes its heat to the space heating circuit and the domestic hot water preparation. In addition, a heat pump charges the buffer storage in order to cover the remaining heat demand. Within the present investigation the system serves as a back-ground for the analysis of the connection of heat pump and storage tank. Fig. 1 (left) shows a layout scheme of the concept while a detailed system description and an analysis with a focus on the solar thermal performance is published in [3].

It has to be noted that the investigation covers non-modulating heat pumps, that means the heat pump only operates in on-/off mode and is not able to heat the fluid to a set temperature. Especially in the case of air as heat source, several heat pumps on the market are modulating. This changes the operation characteristics of the heat pump drastically and also affects the connection to a buffer storage. Therefore, the investigation results presented here are only valid for non-modulating heat pumps. Nonetheless, non-modulating ground source heat pumps have a significant market at the moment with efficiencies usually higher than air-source heat pumps.

Fig. 1. Left: Scheme of the solar thermal heating system for the investigation (the lines indicate energy flows), right: Scheme of buffer storage with two heated zones and its connections to heat pump, solar thermal collectors and heat sinks

<table>
<thead>
<tr>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHE</td>
</tr>
<tr>
<td>DHW</td>
</tr>
<tr>
<td>HP</td>
</tr>
<tr>
<td>Rad</td>
</tr>
<tr>
<td>SH</td>
</tr>
<tr>
<td>SPF</td>
</tr>
</tbody>
</table>
2. Methodology and former results

The system presented in Fig. 1 is simulated in TRNSYS 17 [4] under the boundary conditions shown in Table 1.

Table 1: Boundary conditions for the simulations in TRNSYS

<table>
<thead>
<tr>
<th>Data</th>
<th>TRNSYS Type/Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Zurich, Switzerland</td>
</tr>
<tr>
<td>Building</td>
<td></td>
</tr>
<tr>
<td>Heated area</td>
<td>270 m²</td>
</tr>
<tr>
<td>Heat demand</td>
<td>11800 kWh/a (constant infiltration rate 0.4 h⁻¹/20 °C room temperature)</td>
</tr>
<tr>
<td>Space heating</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Radiators</td>
</tr>
<tr>
<td>Design temperatures (Flow/return)</td>
<td>55 °C / 45 °C at -14 °C ambient temperature / 35 °C / 30 °C at 20 °C ambient temperature</td>
</tr>
<tr>
<td>Domestic hot water demand</td>
<td>2200 kWh/a</td>
</tr>
<tr>
<td>Collector</td>
<td>32 m² selective flat plate collector/tilted 45°, south</td>
</tr>
<tr>
<td>Storage tank</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>Volume 1 m³, height 2 m, diameter 0.8 m</td>
</tr>
<tr>
<td>Heat loss rate</td>
<td>Insulation 0.1 m with 0.037 W/mK, overall heat loss 4.1 W/k</td>
</tr>
<tr>
<td>Heat pump</td>
<td></td>
</tr>
<tr>
<td>Working point B0/W35 (DIN EN 255)</td>
<td>Heating power 8.1 kW (condenser output), COP 4.8</td>
</tr>
<tr>
<td>Volume flow rates</td>
<td>Evaporator 1.9 m³/h, condenser 0.7 m³/h</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Heat up constant 30 s, cool down constant 5 min, minimum turn-off time 10 min</td>
</tr>
<tr>
<td>Heating rod</td>
<td>Power 7 kW</td>
</tr>
<tr>
<td>Heat source</td>
<td>Borehole with 70 m depth</td>
</tr>
</tbody>
</table>

The heat pump parameters are identified for a typical device used in single family houses which had been measured on a test rig at ISFH. The heat pump controller determines the operation signals for the heat pump itself and the heating rod. The latter is used, if the current operating conditions do not allow the standard heat pump mode, e.g. if the heat source temperature is below a certain limit (here -5 °C).

Fig. 1 on the right shows a scheme of the buffer storage charged by the heat pump and 32 m² of solar thermal collectors. The heat pump (HP) charges two zones in the storage, the upper zone supplies the fresh water station (FWS) for preparation of domestic hot water (DHW) while the lower zone is used for space heating (SH). Alternatively, the heat pump may also charge only one zone for both applications. The following sections of the storage tank can be defined:

- The dead volume is situated above the upper heated zone between outlet to the FWS and inlet of the heat pump.
- The DHW volume is charged directly by the heat pump to a constant set temperature. Charging the DHW zone has a higher priority than the SH zone.
- The separation volume separates both heated zones.
The SH volume is used for space heating and is charged with second priority. The set temperature may be constant or variable following the desired flow temperature according to heating curve and the current ambient temperature.

The solar volume is only charged by the solar thermal collectors.

A simulation study is used to determine the system performance under variation of several parameters characterizing the heat pump storage connection. In the first stage of the investigation published in [13], the most important parameters concerning the heat pump storage connection and their optimum values are identified. Summarizing, Fig. 2 shows the overall annual systems’ energy demand and the seasonal performance factor SPF of the heat pump before and after optimizing the most significant parameters. The SPF is the ratio of the heat pump condenser output to the electricity consumption in the period of one year considering the electricity consumption of the heat pump itself and the heating rod.

The first part of the study reveals some important facts regarding the connection of heat pump and storage tank.

- A sharp decrease in the energy demand can be reached if the storage is equipped with two separated heated zones for space heating and domestic hot water instead of only one zone for both applications.
- The set temperature of the DHW zone has only a small impact on the system performance, while the set temperature in the SH zone should be variable according to the heating curve.
- The sensor position defines the volume which is kept on the set temperature. A high sensor position reduces this volume and thus the electricity consumption as well as the heat pump cycles. However, a lower sensor position allows a lower set temperature without reducing the comfort.
- The heat pump flow rates should be minimized with regard to the characteristics of the ground heat exchanger in case of the evaporator and to the rise of the inlet temperature in case of the condenser side.
- The optimum variants have a DHW volume of 100 l and a SH volume between 200 and 300 l. Either a volume between both heated zones (separation zone) and a volume above the upper heated zone (dead zone) are necessary but may be reduced to a small volume of e.g. 40 l each.
- Overall: The total electricity consumption may be reduced by almost 15 % with an optimum heat pump storage connection compared to the base case with one heated zone and by 6 % compared to the base case with two heated zones.
Within the first stage, the boundary conditions of the system simulations had been constant. But these conditions may affect the optimum connection of heat pump and buffer storage. Therefore, the following boundary conditions are varied within the second stage:

- Minimum standby time of the heat pump (Base setting: 10 min): 0 min, 20 min
- Length of borehole heat exchanger BHE (70 m): 80 m
- Room set temperature (20 °C): 19 °C, 21 °C
- Temperature difference between space heating in-/outlet (10 K): 5 K, 15 K
- Weather (Zurich/Meteonorm): Measured data for Hanover of 1996 and 2000
- Domestic hot water demand (2170 kWh/a with tapping profile according to IEA Task 44): 3000 kWh/a with profile according to IEA Task 32 [14].
- Building (270 m² with 44 kWh/m²a): 180 m² with 42 kWh/m²a
- Heating curve (55 °C/45 °C): 65 °C/55 °C, 45 °C/35 °C. The change in the heating curve requires a new dimensioning of the radiators.
- Heating elements (radiators with 55 °C/45 °C): floor heating with 35 °C/30 °C

3. Results

Fig. 3 gives an overview of the system performance for the different boundary conditions. The heat pump connection is set to the base case according to Fig. 2 with two heated zones.

The diagram identifies boundary conditions with a strong or a small impact on the system performance. Most significantly, the weather data leads to an increase of 46% or decrease of 31% in the electricity consumption. Compared to that, the decrease in electricity consumption is small, if the radiators are replaced by a floor heating system. The low operating temperatures of the floor heating lead to a reduced electricity consumption of the compressor and increases the heat extraction from the ground. Due to the higher heat extraction, the ground source temperature reaches earlier the minimum evaporator temperature of -5 °C compared to the radiator system. The consequence is a higher operation time of the heating rod which increases the electricity consumption considerably.
This negative effect can be reduced significantly or even avoided if using a larger heat pump source that is a longer borehole.

The results indicate that the electricity consumption and the annual heat pump performance are influenced significantly by the boundary conditions. The following sections analyze how the boundary conditions affect the optimum settings for the heat pump storage connection. Therefore, system simulations are carried out with the most important parameter sets characterizing the heat pump storage connection for all the boundary conditions shown in Fig. 3. Section 3.1 shows exemplarily the variations of set temperature and volume of the SH zone for different weather data. These simulations allow the definition of the optimum values leading to the lowest energy consumption. Section 3.2 presents the optimum settings of these parameters for all boundary conditions.

3.1. Optimization at varying weather conditions

Exemplarily for the investigation, this section shows the parameter variations characterizing the lower auxiliary zone for space heating at different climatic conditions. Apart from the Meteonorm data for Zurich, the simulations are carried out with two years out of the data measured of ISFH for Hanover during the period 1989 to 2001. The year 1996 has the coldest temperatures within the heating period leading to the highest annually space heat demand while the year 2000 represents one of the warmest years with a low space heat demand.

Fig. 4 presents the overall electricity consumption of all variations concerning the SH zone. The results with different volumes are shown on the left side, in which the variant 0 l represents the case of only one heated zone. The right diagram shows the variations of the set temperature in the SH zone.

![Fig. 4. Overall electricity demand in the simulations with three weather data sets. The variants “Base” marks the adjustments in the base case with two heated zones. Left: Variation of the SH volume. The volume of 0 l represents the result in the case of one heated zone. Right: Variations in the set temperature. The temperature in the lower x-Axis corresponds to the constant temperature while the upper x-Axis corresponds to the shifting in the variable temperature (base case: 0 K). Variants leading to room temperatures below the comfort limit are not displayed.](image)
There is a large difference between a constant and a variable set temperature. The disadvantage of a constant set temperature becomes obvious in the right diagram. For reaching the comfort in the building (20 °C room temperature) the set temperature has to be increased from 41 °C in 2000 to 48 °C in 1996. The variable temperature is set to the heating curve flow temperature which considers the ambient temperature conditions in the different weather data. Therefore, the possible reduction in the variable temperature is the same for all data sets. The variable set temperature may set 7 K below the heating curve independent of the weather data. This temperature reduction is more advantageous at a lower heating load as for 2000 and Zurich (decrease by 4 %) compared to 1996 (-2.5 %).

3.2. General results for SH zone

The simulations concerning the lower auxiliary zone analysis in Section 3.1 are carried out for all boundary conditions described in Section 2. This section sums up the outcomes of all variants.

The left diagram of Fig. 5 gives the optimum volume of the lower auxiliary zone with the lowest overall electricity consumption and the decrease in the consumption compared to a volume of 80 l. In order to characterize the behavior at larger volumes, the right diagram displays the additional electricity consumption of the heating rod after increasing the SH volume from 80 l to 500 l.

Fig. 5. Left: SH zone volume with the lowest electricity consumption depending on the boundary conditions; decrease in electricity consumption with optimized volume compared to the base case with 80 l. Right: Additional electricity consumption of the heating rod after increasing the SH volume from 80 l to 500 l.

A larger space heating zone decreases the condenser temperatures, which leads to higher seasonal performance factors, and reduces the number of heat pump cycles and thus the heat losses during start and stop. However, a larger volume also increases the operation time of the heating rod due to longer periods of heat extraction from the ground which may lead to heat pump inlet temperatures below the operation range (-5 °C). Therefore, the optimum zone volume is characterized by a low energy consumption of the heating rod. If the heat consumption is low (e.g. weather data of 2000) or the heat source is larger (longer BHE), the heating rod is not used even at larger SH volumes. In this case, a higher space heating volume is advantageous. Vice versa, if the consumption is high (e.g. weather data of 1996), the operation time of the heating rod increases, which favors a lower SH volume.

The absolute heat consumption cannot be determined beforehand, since it depends on the desired comfort level of the user and the weather conditions. Therefore, the SH volume should not be too large in order to decrease the operation time of the heating rod.
Fig. 6 shows the optimum set temperature in the SH zone for different boundary conditions. The left diagram gives the optimum constant set temperature and the change of this variant compared to the base case with a variable set temperature according to the heating curve. The right diagram shows the maximum possible reduction in the variable set temperature without affecting the comfort. For these variants the diagram gives the reduction in the electricity consumption compared to the base case.

The left diagram shows, that a constant set temperature for the SH zone is not useful at changing boundary conditions. The optimal set value depends not only on system-specific settings (e.g. heat pump type, space heating system), but also on other factors as the weather conditions. The optimum value differ from 31 °C to 49 °C while the change in electricity consumption compared to the variable temperature setting can be more than 10 %, but may be also below 0 which corresponds to a higher consumption.

The right diagram reveals electricity savings of up to 13 % if the lowest possible variable set temperature is used. The possible reduction compared to the heating curve depends on dimensioning and type of the space heating element and the actual demand. The temperature in the storage may be reduced significantly (Rad. 65/55, Room 19 °C) or the reduction is small (Room 21 °C) or not possible (Rad. 45/35, higher DHW demand). Other factors, e.g. the weather, are not influencing the optimum set temperature (all -7 K). An exception is the behavior at longer standby periods of the heat pump (maximum -3 K possible). A longer minimum standby period avoids a fast heat pump reaction after switching off. In the case of a high space heat demand, a higher set temperature ensures that the heat delivered to the heating elements is sufficient until the heat pump is able to be switched on again.

The reduced set temperature leads to lower temperatures in the space heating circuit as demanded by the heating curve. This indicates an over-dimensioning of the space heating components. Within the simulations, the dimensioning of the radiators was done according to the usual standardized method considering a radiator exponent of 1.3. However, the simulated building has only one heated zone per story each equipped with one large radiator and long non-insulated connecting pipes. These pipes increase the surface for heat emission in the space heating circuit especially at high flow/return temperatures. This explains the high possible reduction in the variant Rad. 65/55 (-10 K) and no reduction in Rad. 45/35 and only -1 K in the case of floor heating with 2 m of connecting pipes.
In conclusion, an optimum set temperature in the lower auxiliary volume requires a well dimensionized space heating system. In this case, the lowest energy consumption is reached, if the current flow temperature of space heating system is used as the set temperature. However, a slow response from the auxiliary heater may necessitate higher set temperatures.

4. Conclusions

Based on the outcomes of all simulations, some general recommendations may be defined how to connect a heat pump with a storage tank in a solar thermal combi system:

- In general, a second heated zone in the storage tank is advantageous, the performance improvement increases with the temperature difference between hot water preparation and space heating. If the temperature level within the space heating circuit is in the range of the DHW temperature (e.g. radiators with high system temperatures), a second zone has no advantage and may even lead to a higher energy consumption.
- An additional zone above the upper heat pump inlet leads to a small increase in the energy consumption while it increases the comfort of the DHW preparation during heat pump operation. Another zone between space heating and DHW volume reduces the mixing of both auxiliary zones especially at high temperature differences. The purpose of both zones may be reached with a small volume.
- The volume of the upper auxiliary zone is less important while the optimum volume of the lower zone depends on the boundary conditions. A larger space heating volume leads to lower condenser temperatures but also increases the operation time of the heating rod. The latter increases especially at a high system load, e.g. a hard winter. Therefore, the volume mustn’t be too large (here 300 l is the optimum) although the electricity consumption is higher than the optimum during years with a small heating load.
- The lower auxiliary zone serves as a pre-heater for the upper zone leading to higher condenser temperatures if charging the upper zone. This results in a frequent exceeding of the set temperature. Therefore, this value may be set to the desired domestic hot water temperature after the fresh water station. Alternatively, the frequency of high condenser temperature may be limited by a high position of the temperature sensor.
- The lower auxiliary zone may be heated with a constant set temperature. However, a variable temperature depending on the outside temperature according to the heating curve is more advantageous. In the case of a slow respondent auxiliary heater (e.g. heat pump with a long standby period), a higher set temperature may avoid a decrease of the room temperature below the comfort limit. This measure shows a higher effect than a larger SH volume which also shows the above mentioned disadvantages.
- The evaporator flow rate of the heat pump influences mainly the electricity consumption of the circulation pump, which outweighs all other effects on the heat pump efficiency. Therefore, a low evaporator flow rate is advantageous.
- The condenser flow rate affects the temperature difference between in- and outlet. With a large temperature difference, the risk of exceeding the set temperature increases. On the other hand, with the same set temperature a small temperature difference leads to a lower average condenser temperature. One of these effects outweighs the other, depending on the temperature level at the heat pump inlet. While a higher flow rate is advantageous in the upper zone with its high temperature level, the performance increases with a low flow rate in the SH zone. However, the heat pump flow rate should be above the design flow rate of the space heating system. Otherwise, the flow rate from the heat pump is directly used in the space heating circuit without an effect on the auxiliary zone and its control sensor leading to condenser outlet temperatures above the set value which decrease the heat pump performance.

Since all the recommendations base solely on simulation results, an extension of the investigation, e.g. by measurements on a test rig, may be reasonable. Likewise, the interaction of the parameters is not analyzed. This concerns the simultaneous variation of two parameters (e.g. sensor position and condenser flow rate) or two boundary conditions (e.g. floor heating and other weather conditions). As mentioned in the Section 1, the outcomes are valid for the combination of buffer storage and one stage heat pumps, which are only operated in on or off. Design rules for modulating heat pumps, which are able to control their outlet temperature, require further simulations.
Acknowledgements

The investigations were realized within the project “SH-T-opt”, FKZ 0325981, which was carried out in cooperation with the companies HELMA Eigenheimbau AG and RESOL – Elektronische Regelungen GmbH and funded by the German Federal Ministry for Economic Affairs and Energy on the basis of a decision of the German Federal Parliament. The authors are grateful for the financial support. The content of this publication is in the responsibility of the authors.

References

[6] Holst S. Type 362 Dynamic radiator model with pipes (Type 162), Bayerisches Zentrum für angewandte Energieforschung e.V., München, Germany, 2010.
[11] Institut für Solarenergieforschung Hameln ISFH. TRNSYS Type 292: Component for heat pump to correct for different flow conditions in condenser or evaporator, 2013
Nutzung des Gebäudes als Wärmespeicher durch direkte Integration von Sonnenwärme in die Raumheizung

- Langfassung -

J. Glembin, T. Haselhorst, J. Steinweg, G. Rockendorf
Institut für Solarenergieforschung GmbH Hameln (ISFH)
Am Ohrberg 1, D-31860 Emmerthal

Tel.:+49-(0)5151-999-647 Fax:+49-(0)5151-999-600
E-Mail: glembin@isfh.de
Internet: www.isfh.de

1. Einleitung

2. Systemkonzepte

Abbildung 1: Schematische Darstellung der untersuchten Systemkonzepte

deutlich geringere Betriebstemperaturen im Vergleich zu Radiatoren. Dies beeinflusst sowohl den Solarertrag als auch den Nutzungsgrad der Zusatzheizung sowie die Wärmeverluste des Verteilnetzes.

3. Methodik

Die Systeme aus Abbildung 1 sind unter den Randbedingungen nach Tabelle 1 in TRNSYS simuliert worden.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Daten</th>
<th>TRNSYS Type/Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetterdaten</td>
<td>Zürich</td>
<td>Nach Meteonorm [8]</td>
</tr>
<tr>
<td>Gebäude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutzfläche</td>
<td>180 m²</td>
<td>Type 56 [4]</td>
</tr>
<tr>
<td>Wärmebedarf</td>
<td>7600 kWh/a bei Luftwechselrate 0,4 1/h, Raumsolltemperatur 20 °C</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 1: Randdaten und eingesetzte TRNSYS-Modelle

<table>
<thead>
<tr>
<th>Auslegungstemperaturen der Raumheizelemente (bei -14 °C)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiatoren</td>
<td>55 °C / 45 °C</td>
</tr>
<tr>
<td>Fußbodenheizung</td>
<td>35 °C / 30 °C</td>
</tr>
<tr>
<td>Bauteillaktivierung</td>
<td>27 °C / 24 °C</td>
</tr>
</tbody>
</table>

Warmwasserbereitung

| WW-Bedarf | 2200 kWh/a | Zapfprofil in Anlehnung an [10] |

Kollektor

| Typ | Selektiver Flachkollektor | Type 832 [11] |
| Fläche/Ausrichtung | 32 m², 45 °, Süd | |

Speicher

| Volumen | 1000 l / 3000 l | |
| Wärmeverlust | 0,1 m Dämmung mit 0,037 W/mK Wärmeverlustkoeffizient 4,1 W/K | Type 340 [12] |

Wärmepumpe

Arbeitspunkt B0/W35 (DIN EN 255)	Wärmemasteigung 8,1 kW Leistungszahl 4,8	Type 401 [13] und Type 292 für Massenstromkorrektur [14]
Volumenströme	1,9 m³/h Verdampfer, 0,7 m³/h Kondensator	
Dynamik	Aufheizkonstante 30 s, Abkühlkonstante 5 min, min. Ausschaltzeit 10 min	
Elektrischer Heizer	Leistung 7 kW	
Wärmequelle	70 m Erdwärmesonde	Type 557 [15] mit Vorschaltrohr

Die Berechnung der solaren Deckung nach Formel (1) berücksichtigt den Solarertrag bei Beladung des Pufferspeichers und der direkten Raumheizung.

$$f_{Sol} = \frac{Q_C}{Q_C + Q_{HP}} = \frac{Q_{C,Storage} + Q_{C,Direct}}{Q_{C,Storage} + Q_{C,Direct} + Q_{HP}}$$ (1)

Diese Berechnungs Methode führt zu höheren Werten des solaren Deckungsanteils im Vergleich zu Definitionen, die den Raumheizbedarf des Gebäudes bei konstanter Innentemperatur beinhalten. Höhere Raumtemperaturen durch solaren Wärmeein-
trag werden somit als zusätzlicher Nutzen aufgrund eines höheren Komforts gewertet.

4. Ergebnisse

4.1 Systeme mit Wärmepumpe

Abbildung 2: Solare Deckung (links) und Energieverbrauch (rechts) der Systeme mit unterschiedlichen Kollektorflächen und konstantem Speichervolumen, Energieverbrauch im Referenzsystem ohne Sonnenkollektoren und Pufferspeicher von 300 l: 6550 kWh (Radiatoren), 5700 kWh/a (FBH), 5920 kWh (BTA), Energieverbrauch beinhaltet Strom mit dem Faktor von 2,5

Die Diagramme in Abbildung 2 ermöglichen einen Vergleich der Systemkonzepte:

- Der Solarertrag in den direkten Systemen wird zu einer Erhöhung der Raumtemperatur über den Sollwert von 20 °C genutzt. Die mittlere Temperatur in den ther mischen Zonen (nicht in den Diagrammen dargestellt) liegt beispielsweise im Falle der Fußbodenheizung während der Heizperiode Oktober bis April bei 20,5 °C bis 20,6 °C im Puffersystem und bei 20,6 °C bis 21,8 °C in den direkten Systemen, je weils abhängig von der Kollektorfläche (10 bis 60 m²). Da höhere Raumtemperatu ren auch die Wärmeverluste des Gebäudes erhöhen, kann der Solarertrag nur
teilweise zur Reduktion des Energieverbrauchs genutzt werden. Beispielsweise werden in der Variante „FBH direkt“ bei 30 m² Kollektorfläche 3400 kWh durch die Solaranlage direkt in die FBH eingebracht, der Raumheizbedarf reduziert sich dadurch jedoch nur um 2000 kWh, dies sind etwa 60 % des direkten Solarertrags.

- Bei einer Kollektorfläche von 10 m² gibt es nur eine kleine Verbesserung durch die direkte solare Beheizung, aber schon bei Kollektorflächen oberhalb von 20 m² schneiden die direkten Systeme deutlich besser ab als die Puffersysteme mit gleichem Raumheizelement und gleicher Kollektorfläche.

4.2 Systeme mit Gaskessel

Im Vergleich zu Wärmepumpen weisen Heizkessel eine weitaus geringere Abhängigkeit vom lastseitigen Temperaturniveau auf. Damit wirken sich die Art der Raumheizung und dessen Betriebstemperaturen anders auf den Energieverbrauch aus. Mithilfe der in Abschnitt 2 erläuterten Methode ist auf Grundlage der Simulationsergebnisse der Energieverbrauch für die einzelnen Systemkonzepte ermittelt worden, wenn als Nachheizung ein Gasbrennwertkessel eingesetzt wird. Abbildung 3 zeigt die solare Deckung und den Energieverbrauch für die System unter den gleichen Bedingungen wie Abbildung 2. Da die Berechnungsmethode nur für den Energieverbrauch Anwendung findet, sind die solaren Deckungsanteile identisch.
Abbildung 3: Solare Deckung (links) und Energieverbrauch (rechts) mit unterschiedlichen Kollektorflächen und konstantem Speichervolumen und Einsatz eines Gaskessels, Energieverbrauch im Referenzsystem ohne Sonnenkollektoren und Pufferspeicher von 300 l: 11060 kWh (Radiatoren), 11320 kWh/a (FBH), 11660 kWh (BTA), Energieverbrauch beinhaltet Strom mit dem Faktor von 2,5

Die Abbildung zeigt deutliche Unterschiede im Vergleich zu den Systemen mit Wärmepumpe:

- Der Energieverbrauch ist höher, da keine Umweltwärme aus dem Erdreich genutzt wird, sondern der Nachheizbedarf vollständig aus dem Brennstoff bezogen werden muss. Bei Verwendung von Radiatoren beträgt der Anstieg 60 %, während der Energieverbrauch im Falle von FBH und BTA um 100 % höher ist. Der Energieverbrauch ist dabei deutlich weniger durch das Temperaturniveau der Raumheizelemente beeinflusst, dies reduziert die Unterschiede zwischen den einzelnen Systemkonzepten.
- Wie in den Wärmepumpensystemen weist das direkte System mit Radiatoren die geringste solare Deckung und den höchsten Energieverbrauch auf. Im Gegensatz dazu ergeben sich für das System Rad + BTA aufgrund des höchsten Kollektorertrages die geringsten Energieverbräuche bei Kollektorflächen oberhalb von 10 m². Die hohen Betriebstemperaturen der Radiatoren wirken sich nur wenig auf den Kesselnutzungsgrad aus.

und großen Kollektorflächen. Werden Radiatoren zur Raumbeheizung genutzt, führt statt einer direkten solaren Beladung der Radiatoren eine solar beheizte BTA (System Rad + BTA) zu einer weitaus größeren Reduktion im Energieverbrauch, der auch geringer ist als wenn das Speichervolumen auf 3000 l erhöht wird (Puffersystem mit Radiator).

4.3 Raumtemperaturerhöhung

Systeme mit direkter solarer Beheizung nutzen das Gebäude als zusätzlichen Speicher für die solare Wärme, indem sie die Temperatur in den Räumen und der Gebäudemasse erhöhen. Ein Überhitzen der Räume wird zum einen durch eine maximale Eintrittstemperatur in die Raumheizung vermieden (z. B. im Falle der BTA 35 °C), was zusätzlich die thermische Belastung der Raumheizelemente reduziert. Bei höheren Kollektortemperaturen wird dieser Sollwert durch Beimischung aus dem Raumheizrücklauf sichergestellt. Zum anderen wird die direkte Beladung nur bei Raumtemperaturen unterhalb eines Maximalwertes durchgeführt, der beträgt im Basisfall 24 °C. Durch eine höhere Temperaturgrenze kann die Menge an gespeicherte solarer Wärme erhöht werden, während ein geringerer Grenzwert den direkten Solarertrag reduziert. Diese Effekte werden durch Variation der maximalen Raumtemperatur zwischen 20 °C und 27 °C analysiert, dabei entsprechen 20 °C der Raumsohlltemperatur für die herkömmliche Beheizung aus dem Pufferspeicher. Abbildung 4 zeigt beispielhaft die Ergebnisse der Variation für die Systeme FBH direkt und Rad + BTA, jeweils mit 30 m² Kollektorfläche und einem Pufferspeichervolumen von 1000 l.

Abbildung 4: Variation der maximalen Raumtemperatur für die direkte Beladung in den Systemen „FBH direkt“ und „Rad + BTA“: Anteil der direkten Beladung am gesamten Kollektorertrag, Reduktion im Raumheizbedarf aus dem Pufferspeicher im Vergleich zu einem System ohne direkte Beladung und Energieeinsparung im Vergleich zur max. Temperatur von 20 °C.
Das Diagramm zeigt einen steigenden Anteil der direkten solaren Beheizung bei höheren Raumtemperaturgrenzwerten. Im Maximum erreicht der Anteil der solaren Direktheizung mehr als 60 % im Falle des Systems „FBH direkt“ und fast 70 % im System „Rad + BTA“. Letzteres hat einen höheren Ertrag in die Heizung, da die BTA unabhängig von den Radiatoren betrieben wird und nicht zeitweise ein hohes Temperaturniveau durch Beheizung aus dem Pufferspeicher aufweist.

5. Diskussion und Schlussfolgerungen

Mithilfe der Simulationen wird in Abschnitt 4 der Energieverbrauch von Systemen mit direkter Solarheizung mit üblichen Konzepten solarthermischer Kombisysteme verglichen. Das Konzept der direkten Integration der solaren Wärme in das Gebäude ist in der Lage, die solare Deckung deutlich zu erhöhen, wenn ein Raumheizelement mit geringer Betriebstemperatur verwendet wird. Im Falle von Radiatoren und höheren Betriebstemperaturen ist dagegen die direkte Beheizung nur eingeschränkt zu empfehlen, z. B. bei kleineren Kollektorflächen.

Im Vergleich zum Puffersystem erhöht die direkte Beheizung den Solarertrag vor allem bei kleineren Pufferspeichervolumen. Bei größeren Volumen besteht eine starke Konkurrenz zwischen den beiden Speichern und der zusätzliche Solarertrag durch die Direktheizung sinkt. Soll eine hohe solare Deckung erreicht werden, ist dies aber mit einem deutlich kleineren Speichervolumen möglich, wenn eine direkte Solarbeheizung eingesetzt wird. Abbildung 2 zeigt z. B., dass ausgehend von einem Puffersystem mit 30 m² und 1000 l Speichervolumen eine solare Deckung von 50 % erreicht werden kann, wenn der Speicher auf 3000 l vergrößert oder alternativ die direkte solare Beheizung in das System integriert wird. Im Vergleich dazu führt ein System mit beiden Maßnahmen – ein 3000 l Pufferspeicher und eine direkte Beheizung – nur zu einer geringfügigen Steigerung der Energieverbrauchsreduktion.

Bei Einsatz eines Gasbrennwertkessels für die Nachheizung hat die Betriebstemperatur der Raumheizung einen geringen Einfluss auf den Nutzungsgrad und damit auf den Gesamtennergieverbrauch. Aus diesem Grund führt hier das System Rad + BTA zum geringsten Energieverbrauch. Das System weist den höchsten Solarertrag im
Direktbetrieb auf, da das solar beladene Raumheizelement unabhängig von der restlichen Raumbeizung ist.

Der Wohnkomfort in der Heizperiode wird in den hier untersuchten Systemkonzepten nur durch das jeweilige Raumheizelement beeinflusst. FBH und vor allem BTA weisen durch ihre Trägheit eine schlechtere Regelbarkeit auf. Auf der anderen Seite wird diese Art der Beheizung über große Flächen mit geringer Übertemperatur in der Regel als angenehmer empfunden als bei Wärmeabgabe über Radiatoren, die dafür aber eine bessere Regelbarkeit aufweisen und den Raum schneller aufheizen können.

Hydraulik und Regelung beeinflussen neben dem Installationsaufwand auch die Systemkosten. In den Puffersystemen ist der Speicher selbst eine der entscheidenden Komponenten in der Kostenberechnung. Um in diesen Systemen eine hohe solare

6. Danksagung

7. Referenzen

[9] Holst S. Type 362 Dynamic radiator model with pipes (Type 162), Bayerisches Zentrum für angewandte Energieforschung e.V., München, Germany, 2010.

[14] Institut für Solarenergieforschung Hameln ISFH. TRNSYS Type 292: Component for heat pump to correct for different flow conditions in condenser or evaporator, 2013

Annual Performance of a Solar Active House Prototype – Comparing Measurement and Simulation

Jan Steinweg¹ and Gunter Rockendorf¹

¹ Institut für Solarenergieforschung Hameln, Am Ohrberg 1, 31860 Emmerthal

Abstract

A new concept for solar active houses is being tested under practical conditions. While conventional solar house concepts combine large collector areas with large storage volumes (up to 10 m³ in a single family house) in order to achieve solar fractions above 50 %, our new concept only needs small storage volumes (1 m³). To substitute the lack of storage capacity, the new system design uses thermally activated concrete elements directly fed by the solar collector. After having been dimensioned and tested by several simulation studies, a prototype building, equipped with the new heating system, has been constructed and extensively monitored.

The first year of operation already revealed the concept’s functionality. During a first monitoring period from April 2015 to March 2016 the recorded data exhibit good agreement with the simulations (based on historical weather data) while storage heat losses are identified as too high. Nonetheless, the annual overall end energy demand for domestic hot water and space heating is 8 kWh/m². This contribution analyses the first year of operation, also covering a peak load test.

Keywords: solar active house, energy storage, thermally activated concrete elements, TABS, ground heat exchanger, heat pump, experimental study, prototype measurement

1. Introduction

Previous solar active house concepts combine large collector areas (30…40 m²) and storage tanks (up to 10 m³) with wood stoves as auxiliary heater in order to achieve a combination of high solar thermal fraction (> 50 %) and low primary energy consumption. The new concept presented in this work is aiming at the same high energy efficiency at largely reduced buffer storage volume towards common sizes of about 1 m³, thus allowing buffer installations in the utility rooms, which is particularly favorable in case of energetic retrofit of buildings.

As a matter of fact, this approach saves expensive building space, and any maintenance is now possible since all system components fit into standard utility rooms.

The resulting lack of storage capacity is substituted by direct solar thermal activation of already existing masses in the building’s concrete slabs. This approach of direct solar thermal room heating has already been evaluated in the 1990’s by Papillon (1993) and generates significant advantages. Due to the characteristically low operation temperature of thermally activated building slabs (TABS), a high collector efficiency even at low irradiance levels can be achieved, which is important during the winter months.

The backup heat is provided by a heat pump (HP) coupled to a slender ground heat exchanger (GHX) which receives regeneration by solar thermal heat. Moreover, the GHX is used for the prevention of stagnation during the summer months, thus permanently obtaining the collector’s energy delivery readiness. The concept is covering an innovative control strategy for temperature optimized solar heat distribution which has been
designed regarding component and system simulations by Glembin (2012, 2013, and 2014) who has theoretically proven the concept's functionality. For practical testing of this concept, a test building has been planned, built and equipped with the system hydraulics developed according to the outcomes of the simulation studies. The present paper reports results of the first measurement period from April 2015 to March 2016 considering function and performance at monthly and annually scales.

2. System concept and prototype building

Fig. 1 displays the designed energy flows of the solar thermal collector, the heat pump and the different sinks for solar and backup heat. In contrast to simple solar thermal systems, the collector supplies heat to three different heat sinks. A new control strategy developed within the project is applied to utilize the heat fluxes with respect to an optimal effect on the system’s end energy savings, see Glembin (2014). According to this strategy both TABS and storage tank may experience positive demand signals, for example during the transitional periods of spring and autumn. The controller then determines the appropriate sink for which the collector is able to gain maximum efficiency. In this case, this may be either a sink provided with a higher priority or a lower demand temperature. As a result of this, the collector can be conducted with very low temperatures starting at 20 °C in cases where the TABS are supplied, and even lower temperatures down to 5 °C in cases of GHX regeneration.

The test building is located in the urban area of Hanover, Germany, comprising a heated area of 270 m² on three floors; basement (BA) ground (GF) and first floor (FF), and with a nominal annual space heat demand of 39 kWh/m². The building is equipped with a solar collector area of 30 m², facing south with an inclination of 45°. TABS layers, which have been designed for maximum performance with minimum effort using component simulations according to Glembin (2012), are placed in GF and FF. To keep them highly efficient and cost effective, only one distribution loop with central temperature control is used for each floor. The utility room houses a simple buffer storage of 1 m³ from which the domestic hot water preparation (DHW) as well as the space heating demand (SH) are supplied, the latter via conventional radiators. The buffer storage is fed by the solar collector as well as an auxiliary heater, which is a ground coupled compression heat pump. A small horizontal ground heat exchanger with an area of 170 m² serves both as the heat source for the HP and the heat sink for the solar collector’s overcapacities during summer. Accordingly, the solar collector can remain in standby for further heat production throughout the summer and experiences almost absent stagnation. Correspondingly, the ground heat exchanger experiences intense regeneration. Therefore, it can be dimensioned significantly smaller than compared to standard design, e.g. due to the German guideline VDI 4640 (2010). A sketch of the concept and a picture of the realized building is displayed in Fig. 2.
A central ventilation unit has not been installed so it is up to the inhabitants to set the air change rate by window ventilation. The windows of the GF are equipped with non-automatic external mounted shading elements on the south, east and west façade, as well as the bath and sleeping room windows at the eastern and western façades of the FF. The other windows are (partially) equipped with self-mounted internal shadings.

Throughout the phase of measurement, the experimental building has been inhabited by two persons. Further facts of the most important components are given in Tab. 1.

Tab. 1: Generic parameters of the main system components of the experimental house

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar thermal collector</td>
<td>Roof integrated, south, 45° inclination, aperture area 30 m²</td>
</tr>
<tr>
<td>Heat pump (HP)</td>
<td>Brine water compression HP, 8 kW nominal power at 2 kW compressor power</td>
</tr>
<tr>
<td>Ground heat exchanger (GHX)</td>
<td>170 m² area with four distribution circuits (excluding supply pipes), polyethylene pipes with 0.5 m distance</td>
</tr>
<tr>
<td>Thermally activated building slabs (TABS)</td>
<td>Approx. 160 m crosslinked polyethylene pipe per slab (ground and upper floor) with 0.5 m distance, bifilar installation, direct connection to glycol circuit of solar collector</td>
</tr>
</tbody>
</table>

3. Measurement and analysis

Measurement concept

The monitoring concept is regarding 65 sensors placed inside and outside the test building and its hydraulic system to gain information about the building’s boundary conditions as well as the heating system’s performance. The recorded data is evaluated firstly to prove the technical integrity of the concept, including the system controller, the component’s interaction and the identification of system and installation issues. Secondly, the system performance will be analyzed by means of indicators such as solar yield Q_{sol} and solar fraction f_{sol}, end energy demand Q_{EE} and the seasonal performance factor SPF of the HP. These quantities are defined by:

$$Q_{sol} = Q_{St} + Q_{TABS,GF} + Q_{TABS,FF} + Q_{GHX}$$ \hspace{1cm} (eq. 1)

$$f_{sol} = \frac{Q_{St} + Q_{TABS,GF} + Q_{TABS,FF}}{Q_{St} + Q_{BTA,EG} + Q_{BTA,OG} + Q_{HP,St}}$$ \hspace{1cm} (eq. 2)

$$Q_{EE} = W_{el,HP,con} + W_{el,HP,aux} + W_{el,Pump} + W_{el,c}$$ \hspace{1cm} (eq. 3)

$$SPF = \frac{Q_{HP,St}}{W_{el,HP,con} + W_{el,HP,aux}}$$ \hspace{1cm} (eq. 4)
The system components, the overall hydraulic scheme and the system boundaries regarded by the energy balances are provided in Fig. 3. Technically, the energy flux is balanced through combined mass flux and temperature measurements, calibrated as pairs. The heat sinks (space heating and hot water preparation, blue areas in Fig. 3) are measured by heat meters and the electricity demand of the heat pump, all hydraulic pumps, valves and controllers is measured by electric meters. The thermal comfort of the building is rated through temperature sensors in representative rooms as well as CO₂ and moisture sensors on each floor as indicators for the level of air change due to window ventilation. The data scan interval for all sensors is set to 30 seconds.

Data analysis concept

We present the system indicators measured during the time period between April 2015 and March 2016 at annual and monthly scales. For further analysis, measurements will be compared to the results of system simulations based on a set of equivalent, historical weather data which had been identified from measurements in the same region during 1989 - 2001. This approach was mandatory for the following reasons:

- Some meteorological data required for the simulation were not measured with the test building, e.g. the ratio of diffuse and direct irradiation, sky temperature, wind speed and ground temperatures.
- Over the course of a year, partially shading of the solar collector and the irradiation sensor occurs, effecting localized signals to sensors and the collector.
- Missing reliable data for the inhabitant’s behavior. Room temperatures are not measured building-wide, air change or shading cannot be registered directly at all.
• Some sensor values are considered to be representative for a large area or a component with a wide spread. Examples are again room temperatures but also the core temperatures of the buildings slabs, which are measured with a single sensor and assumed to be equal for the whole room or component.

Hence, to provide consistent simulation parameters, suitable historical weather data are used. As similarity indicators the annual irradiation (on the 45° south inclined surface), the mean ambient temperature and the degree-day numbers are employed and the similarity of the historical and in-situ data are judged by means of least square fit. As result, the best fit was assigned to the weather data of year 1994 which also shows good comparability at monthly scale; hence the 1994 weather data is used as climate environment for the simulations in the sequel. The respective similarity indicators are given in Tab. 2. The remaining differences between the two periods is small indeed, but has to be kept in mind when concluding the results.

Tab. 2: Comparison of the indicator values of the measured year 2015/16 and the historical weather data of Hanover 1994

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Measurement 2015/16</th>
<th>Hanover 1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiation (45°)</td>
<td>1146 kWh/m²</td>
<td>1185 kWh/m²</td>
</tr>
<tr>
<td>Degree-day number</td>
<td>3382 Kd</td>
<td>3312 Kd</td>
</tr>
<tr>
<td>Mean temperature</td>
<td>10,3 °C</td>
<td>10,7 °C</td>
</tr>
</tbody>
</table>

The useful energy demand, i.e. the energy emitted via the radiators and the domestic hot water, applied to the simulations is adjusted to the measured useful energy of the test building. The simulated space heating energy demand is adapted based on a mean room temperature. To compensate for the situation of partially heating of the building during the monitoring period, the simulations regard a slightly reduced indoor temperature of 19.1 °C. The resulting useful energy demand for space heating (via the radiators) is 5360 kWh/a. The amount of tapped hot water has not been measured. Instead the existing standard domestic hot water demand profile according to IEA Task 44 in Weiss (2003) and Dott (2012) has been adapted to match the respective energy demands of measurement and simulation. Again to adjust to the situation of reduced building usage, the demand profile was scaled by a factor of 0.46 (original data refer to four inhabitants). The resulting energy demand for domestic hot water preparation is 995 kWh.

4. Measurement and simulation results

The following analysis considers measurement and simulation outcomes of the new solar house concept. The comparison is conducted following the method described above. In the first step, annual calculations of the main indicators are compared. In the second part further details are outlined at monthly scale. The following section also concludes the experiences of the peak load tests, which were conducted during February and March 2016.

Annual results

Tab. 3 compares some of the main indicators of both the measured and the simulated building concept which characterize the system performance.

While the overall annual collector yield of ca. 275 kWh/m²a differs slightly only (by 1 %) between measurement and simulation, the spatial supply distribution of the produced solar heat exhibits some differences. The measured energy delivered to TABS contributes by 48 % to the overall solar heat produced, while in the simulation the same share is 64 % (a difference of about 1300 kWh). Analysis of the test building´s runtimes shows that TABS are fed by the collector about 25 % shorter than in the simulation. The reasons might be a lower collector performance, larger dead band temperatures or more frequent lock waits due to room temperatures exiting the controller´s high limit cut out during the measurement phase.

The lower energy input in TABS in the test building is then compensated by a higher energy input to the storage tank. Consequently, a respective difference of 1300 kWh occurs between measured and simulated storage input, too, such that in sum, the overall energy transfer between TABS and storage input are compensated. The remaining difference of the overall annual data of 1% is leveled by a slightly higher amount
of energy transferred to the GHX while runtimes are almost equal. The stagnation time of the solar collector is 48 h for the simulated system. This only occurs in rare events of GHX outlet temperatures exceeding 25 °C (which is the maximum evaporator inlet temperature of the HP). Since the collector temperature has not been measured, stagnation hours could not be detected directly during the monitoring period.

Tab. 3: Annual results of measurement from April 2015 to March 2016 and simulation based on Hanover weather data of 1994 for the new solar house concept

<table>
<thead>
<tr>
<th></th>
<th>Measurement 2015/16</th>
<th>Simulation 1994</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total solar collector yield</td>
<td>8525 kWh (274 kWh/m²)</td>
<td>8610 kWh (276 kWh/m²)</td>
<td>+1 %</td>
</tr>
<tr>
<td>To TABS ground floor</td>
<td>1949 kWh (23 %)</td>
<td>2893 kWh (34 %)</td>
<td>+48 %</td>
</tr>
<tr>
<td>To TABS first floor</td>
<td>2150 kWh (25 %)</td>
<td>2593 kWh (30 %)</td>
<td>+21 %</td>
</tr>
<tr>
<td>To storage</td>
<td>2844 kWh (33 %)</td>
<td>1573 kWh (18 %)</td>
<td>-45 %</td>
</tr>
<tr>
<td>To GHX</td>
<td>1295 kWh (15 %)</td>
<td>1094 kWh (13 %)</td>
<td>-16 %</td>
</tr>
<tr>
<td>Solar fraction</td>
<td>52 %</td>
<td>54 %</td>
<td>+4 %</td>
</tr>
<tr>
<td>Energy HP → Storage</td>
<td>6438 kWh</td>
<td>6006 kWh</td>
<td>-7 %</td>
</tr>
<tr>
<td>Total electricity demand</td>
<td>2173 kWh</td>
<td>1875 kWh</td>
<td>-14 %</td>
</tr>
<tr>
<td>SPF</td>
<td>3.45</td>
<td>3.69</td>
<td>+7 %</td>
</tr>
</tbody>
</table>

Little deviations exists for the solar gains. The difference between solar fraction of measured and simulated test house is 4%. Slight difference occurs for the energy delivered to the storage by the HP (-7%). Accordingly, the SPF of the HP is 7 % higher in reality than simulated and for the same reason, the total electricity demands differ by 14 %. The difference of the SPF can be explained by the following reasons:

- During October and November 2015, the system controller caused a problem which lead to unnecessary HP running on high temperature level. A major part of that energy got lost via the solar collector to ambient which may explain the 400 kWh higher storage input.
- As of Tab. 2 there are some residual differences in the weather data used for simulation. The mean annual ambient temperatures differ by 0.4 K only, however, between October and March the differences are slightly higher (about 0.7 K). This influences the demand of SH energy and also affects the GHX temperatures.
- The space heating zone inside the storage tank exhibits a mean temperature which is 3.8 K higher during the monitoring 2015/16 as compared to the simulations. This is most likely caused by a lower stratification efficiency of the real storage tank compared to its model. Additionally, the slightly lower ambient temperature mentioned above also has a little impact on the demand supply temperature level of the SH which is calculated with regard to the ambient temperature.

All despite this, the remaining energy demand is very low, especially when considering the sometimes imperfect performance of the system during the first year due to its commissioning. The overall electricity demand (including all electric loads necessary for the annual heat supply) is 2173 kWh or 8 kWh per m² of heated area. Considering primary energy demand, this is passive house level although the measurement period includes commissioning tests and dysfunctions during the first months in 2015 as well as peak load tests during February and March 2016.

Monthly results

To rationalize why a significantly higher share of solar energy is delivered to the storage and how this affects the system performance, Fig. 4 displays diagrams of the monthly solar energy yield distributed to the storage tank and the TABS.

The diagram on the left refers to simulation results which have been concluded in Tab. 3. These are based on a specific parameterization of the storage tank through the design heat loss rate of 5.2 W/K and also taking into account heat losses by thermal bridges and internal recirculation flows according to Wilhelms (2008). The diagram of Fig. 4 (left) shows a pronounced deviation of storage energy inputs between measurement and
simulation during the summer months: here, the measured energy input is 45 % higher between May and August than simulated. Since in this time period the only heat demand results from DHW tapping, which is the same amount at measurement and simulation, the difference must be the consequence of significantly deviating heat losses of the storage tank.

As consequence of this, the test house’s storage heat loss rate has been calculated to 7.8 W/K. Some physical reasoning for this could be identified: Considerably circulating flows between the storage tank and its adjacent components (HP and fresh water unit) were located. These flows have been detected with help of the analysis of detailed measurement data and occurred despite the installation of heat traps at the related storage connections. Although further evaluation of thermal bridges supported by thermography did not show any additional indications, other heat loss paths cannot be excluded completely, either. Given by the adverse position of the temperature and mass flow sensors, heat losses of the solar heat transfer unit and the piping are also included in the measured energy delivered to the storage. In consequence to that, the simulation model has been adapted considering these additional heat losses.

The measured overall energy delivered to TABS according to Tab. 3 is almost 1400 kWh lower than in the simulation. As Fig. 4 displays, this difference essentially occurs during the spring and autumn months. This deviation may be rationalized by taking into account passive solar gains and air change rates. The simulated building has an automatic external shading of all east, south and west oriented windows with a threshold total irradiation of 300 W. The air change rate is 0.4 h⁻¹ with an optional night ventilation of 2 h⁻¹ once the room temperature exceed 26 °C. The monitored test building, in contrast, has to be shaded manually and additional, not all of the windows are equipped with effective external shadings. On the other hand, the real air change is low as a consequence of the reduced building usage. As consequence, the simulated passive solar gains are underestimated while the heat losses due to ventilation are overestimated. Though, the TABS threshold room temperature in both cases is 24 °C. If the temperature hysteresis between room and threshold room temperature is lowered by higher solar gains and lower air change the potential for energy delivery by TABS is lowered as well. In sum, this explains the higher active solar energy input to the simulated building.

Taking into account adjusted storage heat losses, improved simulation results are displayed in the right diagram of Fig. 4. We see that the mean deviation between measured and simulated solar energy inputs to the storage tank from May to August has now decreased to 10 %. The measured system performance indicators used in Tab. 3 are again given in Tab. 4 and compared to the new simulation results of the model with matched storage heat losses including the losses of the solar heat transfer station.

When comparing Tab. 3 and Tab. 4 a slight increase of the solar collector yield is visible. Also the distribution of the solar heat to TABS and storage has changed. The improved results indicate TABS get a 6 % lesser share while the storage supply rises by 9 %. Due to elevated heat losses regarded by the new parameters, the heat transferred to the storage by heat pump also increases by more than 250 kWh. Together with a slight decrease of HP efficiency, the total electricity demand rises by 100 kWh. The solar fraction of eq. 2, in this case it yet
rises to 55 % since the solar yield rises stronger than the heat supplied by HP.

Compared to the measurements, it can be concluded that the difference in solar collector yield increases while the distribution of the solar energy to the different sinks now fits much better. With a solar yield now being a little higher than measured, the performance of the HP, its heat delivered to the storage tank and the total annual electricity demand moves closer to the measured results. Although the shares of the solar heat sinks do not fit perfectly, the order of the heat distribution can be approximated quiet well by the simulation. The remaining difference is most likely caused by the different shading and air change parameters.

Tab. 4: Annual results of measurement 2015/16 and simulation (Hanover, 1994) for the new solar house concept with matched storage heat losses

<table>
<thead>
<tr>
<th></th>
<th>Measurement 2015/16 (274 kWh/m²)</th>
<th>Simulation 1994 (matched storage losses) (285 kWh/m²)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total solar collector yield</td>
<td>8525 kWh</td>
<td>8891 kWh</td>
<td>+4 %</td>
</tr>
<tr>
<td>To TABS ground floor</td>
<td>1949 kWh (23 %)</td>
<td>2610 kWh (29 %)</td>
<td>+34 %</td>
</tr>
<tr>
<td>To TABS first floor</td>
<td>2150 kWh (25 %)</td>
<td>2503 kWh (28 %)</td>
<td>+16 %</td>
</tr>
<tr>
<td>To storage</td>
<td>2844 kWh (33 %)</td>
<td>2402 kWh (27 %)</td>
<td>-16 %</td>
</tr>
<tr>
<td>To GHX</td>
<td>1295 kWh (15 %)</td>
<td>920 kWh (10 %)</td>
<td>-29 %</td>
</tr>
<tr>
<td>Solar fraction</td>
<td>52 %</td>
<td>55 %</td>
<td>+6 %</td>
</tr>
<tr>
<td>Energy HP → Storage</td>
<td>6438 kWh</td>
<td>6260 kWh</td>
<td>-3 %</td>
</tr>
<tr>
<td>Total electricity demand</td>
<td>2173 kWh</td>
<td>1974 kWh</td>
<td>-9 %</td>
</tr>
<tr>
<td>SPF</td>
<td>3,45</td>
<td>3,66</td>
<td>+6 %</td>
</tr>
</tbody>
</table>

Peak load tests

From February 23rd to March 29th, the new solar active house system of the test building has been stressed by a peak load test. It was aiming at the evaluation of the remaining thermal backup of the system, especially of the HP and its GHX source as auxiliary heat supply, under practical conditions. A higher load shall be obtained by increasing the room set temperature on the one hand while reducing the available GHX area by 50 % to about 85 m² on the other. This leads to a more frequent HP operation while the heat pump’s energy source is significantly smaller.

For the realization of a higher room set temperature the inhabitants have been instructed to adjust the radiator’s thermostats by a certain amount. The remaining heating circuit parameters have not been changed, so the threshold room temperature of the TABS remains 24 °C. The resulting mean daily room temperatures of BA, GF and FF during the peak load test are displayed in the right diagram of Fig. 5.

The distribution of the room temperatures remains the same as before the peak load tests. Due to the higher temperature of the utility room situated in the basement, this floor shows the highest temperatures, followed by the GF. As only few rooms of the FF are heated, it has the lowest temperature level. The mean overall temperature (Tamb) increases by almost 2.5 K to 22 °C. A related simulation study reveals that this higher room temperature means an increase of the energy demand for SH of 36 %.

The diagram on the right of Fig. 5 displays the soil temperatures (Tsoil,in) measured between the GHX pipes, the daily minimum of the GHX in- and outlet temperatures (TGHX,in,min and TGHX,out,min) and the ambient temperature (Tam) during the peak load test. The beginning of the test is clearly remarkable since the daily minimum temperatures of GHX in- and outlet decrease by almost 2 K. Both minimum temperatures remain below zero for the whole test period. While the mean runtime of the HP remains around 20 minutes, the number of cycles of HP operation increases. The reduced GHX area has been achieved by a reduced number of parallel circuits which has also been reduced from four to two. This leads to a higher mass flow through the remaining circuits which, in combination with the lower heat exchanger area, also leads to a decrease of fluid temperatures. It is remarkable that the mean soil temperature measured right between the GHX pipes which are arranged with a distance of 0.5 m shows hardly no affection by this temperature decrease. Its temperature runs in closer
In accordance to the ambient temperature.

However, the soil temperature at the beginning of the peak load test is almost exactly the same as at the end of the test which most reasonably is caused by the further increasing ambient temperature at the beginning of March. The grey area of the right diagram shows the slowly decreasing amount of energy which is withdrawn from the GHX while the blue area of the left diagram indicates that a significant share of SH energy is already delivered by TABS. In effect, the system withstands the higher thermal loads despite the significantly smaller GHX area very well. Nonetheless, it has to be concluded that the test has been performed quite late in the heating season and with insufficient load demand for a significant stress of the auxiliary heater to its limit. Anyway, the test clarified that the system concept provides considerably heating reserves, which corresponds to recent outcomes of system.

![Fig. 5: Room and GHX temperatures during the peak load test, test period in both diagrams marked with hatching](image)

Room temperatures during peak load tests (left): Energy transferred to space heating from TABS and radiators, room temperatures in basement (Tr,BA), ground floor (Tr,GF) and first floor (Tr,FF) and mean temperature (Tr,m), Ground temperatures during peak load tests (right): Energy transferred from GHX to HP (GHX→HP), mean soil temperature (Tsoil,m), ambient temperature (Tamb), minimum in- (T_GHX,in,min) and outlet temperature (T_GHX,out,min)

Conclusion and outlook

The measurement results of the first year show that the new solar active house concept is already working very satisfying although several initial malfunctions and issues which had to be solved lowered the systems performance. The measured solar fraction of 52 % is already within the expectations. With a remaining overall electricity demand of 8 kWh/m² the primary energy demand is very low. The comparison to system simulations shows a good correspondence but also reveals higher storage heat losses than expected. The losses can mainly be affiliated to unwanted circulating flows through heat pump and fresh water unit. Though heat traps have been provided by the installer as well as a good pipe and component insulation, backflow preventers in the prefabricated components hydraulics were missing almost completely.

The peak load test which has been performed at the end of the heating season was not intensive enough to show the backup heaters limit. Anyway, the current system configuration appears to be well prepared for seasons with higher energy demands. The GHX area might prospectively be further reduced which should be object of further simulation studies.

The missing backflow preventers have now been added, the improvements of controller algorithms, parameters, hydraulics and different performance tests are finished. The GHX temperature has been fully recovered after the end of the peak load test within two months. Since June 2016 a second measurement period is running. The aim is to get results of a full year’s period with optimized system performance and no further interference to identify the concepts full potential under practical conditions.
5. Acknowledgement

The project SH-T-Opt Exp (FKZ 032559) is funded by the German Federal Ministry for Economic Affairs and Energy based on a decision of the German Federal Parliament. Project partners of the ISFH are HELMA Eigenheimbau AG, Lehrte and RESOL Elektronische Regelungen GmbH, Hattingen. The authors are grateful for the financial support. The content of this paper is in the responsibility of the authors.

6. References

Glembin et al., Solar Active Building with Directly Heated Concrete Floor Slabs, SHC 2013, International Conference on Solar Heating and Cooling for Buildings and Industry, September 23rd-25th 2013, Freiburg, Germany

Erstes Betriebsjahr eines neuartigen Sonnenhauskonzepts
- Messergebnisse und Simulationen

J. Steinweg
Institut für Solarenergieforschung GmbH Hameln (ISFH)
Am Ohrberg 1, D-31860 Emmerthal

Tel.:+49-(0)5151-999-647 Fax:+49-(0)5151-999-600
E-Mail: steinweg@isfh.de
Internet: www.isfh.de

1. Einleitung

Aktuelle Sonnenhauskonzepte kombinieren große Kollektorflächen (30…40 m²) und
Pufferspeicher (bis zu 10 m³ und mehr im Einfamilienhaus) mit Holzfeuerung als Nach-
heizung. So erreichen sie sowohl hohe solare Deckungen (>50 %) als auch einen ge-
ringen Primärenergiebedarf. Das in diesem Beitrag beschriebene neue Konzept hat
gleiche Ansprüche an die Energieeffizienz, bei deutlich reduziertem Speichervolumen
von etwa 1 m³. Dadurch kann der Speicher komplett im Heizungsraum untergebracht
werden, was das Konzept auch für die energetische Sanierung von Bestandsgebäu-
den attraktiv macht. Dieser Ansatz spart nicht nur kostenintensiven umbauten Raum im Gebäude sondern ermöglicht auch eine deutlich bessere Zugänglichkeit der ge-
samten Systemkomponenten für Wartungs- und Instandsetzungsarbeiten.

Das entstehende Defizit an Speicherkapazität wird teilweise durch den Einsatz einer
direkt solarthermischen Aktivierung der bereits im Gebäude vorhandenen Bauteilmas-
sen kompensiert. Dieser Ansatz ist bereits in den 1990er Jahren durch (Papillon 1993)
untersucht worden und bietet signifikante Vorteile. Aufgrund der sehr geringen Be-
triebstemperaturen der Bauteilaktivierung (BTA), typischerweise kaum höher als die
Raumsolltemperatur, kann ein bedeutender Kollektorertrag bereits bei geringer Ein-
strahlungsintensität generiert werden. Dies ist besonders in den einstrahlungsschwä-
chen Wintermonaten von großem Vorteil.

Die Nachheizenergie wird von einer Kompressionswärmepumpe (WP) geliefert, die
den sehr klein dimensionierten Erdwärmeheizkollektor (EWK) als Quelle nutzt. Eine Ver-
bindung von Sonnen- und Erdwärmeheizkollektor ermöglicht die frühjährige Regenera-
tion mittels solarthermischer Wärme. Im Gegenzug kann der EWK dazu beitragen die
sommerliche Stagnation des Solarkollektors zu verhindern, sodass dieser stets in Be-
triebsbereitschaft bleibt. Das neue Konzept umfasst auch eine innovative Regelstrate-

2. Systemkonzept und Testgebäude

Abbildung 1: Schematische Darstellung des neuen Wärmeverteilungskonzepts (die Linien symbolisieren Energieflüsse)

Abbildung 2: Zeichnung des Testgebäudes während der Konzeptphase (links) und Foto des fertigen Gebäudes nach der Inbetriebnahme im Januar 2015 (rechts)

Eine mechanische Lüftung ist nicht vorgesehen worden, stattdessen wird auf Fensterlüftung durch die Bewohner gesetzt. Die Fenster des EG auf der Süd-, Ost- und Westfassade sowie die Bad- und Schlafzimmerfenster des OG sind mit außenliegenden Verschattungselementen ausgestattet (manuelle Steuerung). Die anderen Fenster besitzen teilweise von innen durch die Bewohner angebrachte Verschattungselemente.
Während der gesamten Messphase ist das Gebäude von 2 Personen bewohnt. Weitere Parameter der wichtigsten gebäudetechnischen Komponenten sind in Tabelle 1 enthalten.

<table>
<thead>
<tr>
<th>Solarthermischer Kollektor</th>
<th>Dachintegriert, 45° geneigt und nach Süden ausgerichtet, 30 m² Aperturfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmepumpe</td>
<td>Sole-Wasser WP, 8 kW thermische Leistung bei 2 kW Kompressorfürleistung</td>
</tr>
<tr>
<td>Horiz. Erdwärmekollektor</td>
<td>170 m² Fläche in vier Kreisen (ohne Erschließungsleitungen), PE-Rohr mit 0.5 m Verlegeabstand</td>
</tr>
<tr>
<td>Solarthermische Bauteillakti-</td>
<td>Ca. 160 m PEX-Rohr je Etage mit 0.5 m Verlegeabstand, bifilare Verlegung, direkt an den Glykolkreis des Solarkollektors angeschlossenei</td>
</tr>
</tbody>
</table>

3. Messung und Auswertung

3.1 Messkonzept

Insgesamt ermöglichen 65 Sensoren innerhalb und außerhalb des Gebäudes eine detaillierte Erfassung der Umgebungsbedingungen und Betriebszustände sowie der Leistungsfähigkeit des Konzepts. Die aufgenommenen Daten werden dabei zuerst verwendet, um die technische Funktionsfähigkeit des Systems und aller Komponenten zu ermitteln und ggf. Fehlfunktionen zu identifizieren. Des Weiteren werden anhand der Messdaten verschiedene Auswertegrößen berechnet, die Auskunft über die Leistungsfähigkeit des Systems geben. Dazu gehören der Solarertrag Q_{sol}, die solare Deckung f_{sol}, der Endenergiebedarf Q_{EE} und die Jahresarbeitszahl der WP JAZ_{WP}. Die Berechnungen sind wie folgt definiert:

$$Q_{sol} = Q_{St} + Q_{BTA,EG} + Q_{BTA,OG} + Q_{EWK}$$ \hspace{1cm} (1)

$$f_{sol} = \frac{Q_{St} + Q_{BTA,EG} + Q_{BTA,OG}}{Q_{St} + Q_{BTA,EG} + Q_{BTA,OG} + Q_{WP,St}}$$ \hspace{1cm} (2)

$$Q_{EE} = W_{el,WP,Kon} + W_{el,WP,Aux} + W_{el,P} + W_{el,R}$$ \hspace{1cm} (3)

$$SPF = \frac{Q_{WP,St}}{W_{el,WP,Kon} + W_{el,WP,Aux}}$$ \hspace{1cm} (4)

- Q_{sol}: Solarertrag des Kollektors in kWh
- Q_{St}: An Speicher gelieferte Solarenergie in kWh
- $Q_{BTA,EG}$: An BTA (EG/OG) gelieferte Solarenergie in kWh
- $Q_{BTA,OG}$: An EWK gelieferte Solarenergie in kWh
- $Q_{WP,St}$: Von WP an den Speicher gelieferte Energie in kWh
- $W_{el,WP,Kon}$: Elektrische Energieaufnahme des WP Kompressors in kWh
- $W_{el,WP,Aux}$: Elektrische Energieaufnahme des WP Heizstabs in kWh
- $W_{el,P}$: Elektrische Energieaufnahme der Pumpen in kWh
- $W_{el,R}$: Elektrische Energieaufnahme des Systemreglers, inkl. aller Ventile, in kWh

Abbildung 3: Hydraulikskizze des Systemkonzepts im Testgebäude mit den wesentlichen Komponenten für die Energiebilanzierung

3.2 Auswertungskonzept

- Einige für die Simulationsmodelle wichtige Daten sind am Testgebäude nicht gemessen worden. Dazu zählen Diffus- und Direktstrahlungsanteile, Himmels temperatur, Windgeschwindigkeit und Erdreichtemperaturen.
- Der Strahlungssensor am Testgebäude ist im Laufe des Jahres mehrfach und abweichend vom Kollektorfeld partiell oder vollständig verschattet gewesen.

- Messwerte einiger Sensoren müssen z.T. als repräsentativ für große Bereiche oder Komponenten angenommen werden, beispielsweise Raumtemperaturen, die an einer Stelle im Raum gemessen wurden und repräsentativ für die gesamte Etage angenommen werden, Erdreichtemperaturen am EWK oder die Bauteiltemperatur der thermisch aktivierten Elemente.

Tabelle 2: Vergleich der Bewertungsgrößen der Messperiode 2015/16 mit dem historischen Wetterdatensatz Hannovers für 1994

<table>
<thead>
<tr>
<th></th>
<th>Hannover 2015/16</th>
<th>Hannover 1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einstrah lung (45°)</td>
<td>1146 kWh/m²</td>
<td>1185 kWh/m²</td>
</tr>
<tr>
<td>Gradtagzahl</td>
<td>3382 Kd</td>
<td>3312 Kd</td>
</tr>
<tr>
<td>Mittlere Außentemp.</td>
<td>10,3 °C</td>
<td>10,7 °C</td>
</tr>
</tbody>
</table>

4. Mess- und Simulationsergebnisse

Die folgende Analyse vergleicht Mess- und Simulationsergebnisse des neuen Sonnenhauskonzepts. Der Vergleich folgt dabei dem oben beschriebenen Ansatz. Im ersten

4.1 Ergebnisse auf Basis von Jahresbilanzen

Tabelle 3 vergleicht die oben definierten Bewertungsgrößen aus den Messdaten des Testgebäudes mit denen der Systemsimulation.

<table>
<thead>
<tr>
<th>Bewertungsgrößen</th>
<th>Messung 2015/16</th>
<th>Simulation 1994</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarertrag gesamt</td>
<td>8525 kWh (274 kWh/m²)</td>
<td>8610 kWh (276 kWh/m²)</td>
<td>+1 %</td>
</tr>
<tr>
<td>An BTA EG</td>
<td>1949 kWh (23 %)</td>
<td>2893 kWh (34 %)</td>
<td>+48 %</td>
</tr>
<tr>
<td>An BTA OG</td>
<td>2150 kWh (25 %)</td>
<td>2593 kWh (30 %)</td>
<td>+21 %</td>
</tr>
<tr>
<td>An Speicher</td>
<td>2844 kWh (33 %)</td>
<td>1573 kWh (18 %)</td>
<td>-45 %</td>
</tr>
<tr>
<td>An EWK</td>
<td>1295 kWh (15 %)</td>
<td>1094 kWh (13 %)</td>
<td>-16 %</td>
</tr>
<tr>
<td>Solare Deckung</td>
<td>52 %</td>
<td>54 %</td>
<td>+4 %</td>
</tr>
<tr>
<td>Energie WP→Speicher</td>
<td>6438 kWh</td>
<td>6006 kWh</td>
<td>-7 %</td>
</tr>
<tr>
<td>Strombedarf gesamt</td>
<td>2173 kWh</td>
<td>1875 kWh</td>
<td>-14 %</td>
</tr>
<tr>
<td>JAZ</td>
<td>3,45</td>
<td>3,69</td>
<td>+7 %</td>
</tr>
</tbody>
</table>

Während der spezifische Kollektorertrag von etwa 275 kWh/a zwischen Messung und Simulation nur um 1 % abweicht, zeigt die Verteilung der Solarwärme auf die verschiedenen Senken doch deutliche Unterschiede. Die an die BTA gelieferte Solarenergie macht laut Messung 48 % des gesamten Solarertrags aus, während laut Simulation der Anteil bei 64 % liegt (ein Unterschied von 1.300 kWh). Eine Analyse der im Testgebäude aufgezeichneten Betriebszeiten der BTA zeigen, dass die BTA Beladung in Summe etwa 25 % weniger Betrieb aufweist als in den Simulationen. Gründe können geringere Kollektorleistung, größere Ein- und Ausschalthysterese oder häufigere Sperrzeiten für den BTA Betrieb durch hohe Raumtemperaturen über der Ausschaltwelle des Reglers sein.

Auch die Abweichungen der solaren Deckung in Messung und Simulation sind mit 4 % gering. Etwas höher (7 %) ist die im Testgebäude von der WP gelieferte Energie an
den Speicher. In Kombination mit der ebenfalls schlechteren Performance der WP (7 % geringere JAZ) resultiert ein um 14 % höherer Gesamtstrombedarf für die Wärmeversorgung des Testgebäudes gegenüber der Simulation. Der Unterschied der JAZ lässt sich dabei wie folgt begründen:

- Während der WP Betriebszeit im Oktober und November 2015 hat ein Problem mit dem Systemregler einen WP Betrieb bei unnötig hohen Temperaturen verursacht. Ein großer Teil dieser Energie ging zudem über den Solarkollektor an die Umgebung verloren. Allein dies kann die etwa 400 kWh unterschied erklären, wenngleich die Auswirkungen nicht eindeutig bilanziert werden können.

- Wie in Tabelle 2 gezeigt entstehen Abweichungen durch die Unterschiede in den Wetterdaten des Standorts. Wenngleich sich die Jahresmitteltemperatur nur um 0,4 K unterscheidet, ist diese Abweichung während der Heizperiode (Oktober bis März) mit 0,7 K noch etwas größer. Dies beeinflusst sowohl den anfallenden Raumheizbedarf als auch die Temperaturentwicklung im Erdreich.

Alles in allem ist der verbleibende Energiebedarf zur vollständigen Wärmeversorgung des Gebäudes sehr gering, besonders unter Berücksichtigung des zeitweise fehlerhaften Systembetriebs und der Phase der Erstinbetriebnahme. Der Gesamtstrombedarf für Wärmepumpe und sämtliche Hilfsenergien beträgt 2.173 kWh/a oder 8 kWh/a bezogen auf die beheizte Wohnfläche. Dieses Ergebnis liegt damit gleichauf mit Sonnenhauskonzepten, die mit primärenergetisch günstigeren Biomassenachheizungen ausgestattet sind.

4.2 Ergebnisse auf Basis von Monatsbilanzen

Der Frage nachgehend, warum im Testgebäude ein signifikanter höherer Anteil der Solarenergie an den Speicher geliefert wird und wie sich das auf die Systemleistung auswirkt, zeigt Abbildung 4 Diagramme, die die Aufteilung der Solarenergie auf BTA und Speicher monatlich aufschlüsseln.

Das linke Diagramm bezieht sich dabei auf die Simulationsergebnisse, wie sie in Tabelle 3 den Mesergebnissen gegenübergestellt sind. Diese basieren auf einer spezifischen Parametrisierung des Speichermodells mit den nominellen Wärmeverlusten entsprechend den Herstellerangaben von 5,2 W/K. Zusätzlich sind in diesem Wert bereits effizienzmindernde Effekte wie Wärmebrücken und Zirkulationsströmungen in An-

Die an die BTA gelieferte Energiemenge ist laut Messung fast 1.400 kWh geringer als in der Simulation. Wie Abbildung 4 zeigt, resultiert der Unterschied vornehmlich aus Abweichungen in den Übergangsmonaten. Dies kann erklärt werden, wenn man Auswirkungen unterschiedlich angenommener passiver Solargewinne und Lüftungsrate mit in Betracht zieht. Das simulierte Gebäude hat eine automatisch gesteuerte externe Verschattung aller ost-, west- und südwestlichen Fenster mit einer Schalschwellen von 300 W/m² Einstrahlung. Die Luftwechselrate beträgt konstant 0,4 h⁻¹ mit
sommerlich optionaler Nachtlüftung mit 2 h⁻¹ wenn die Raumtemperatur 26 °C über-
schritten hat. Das Testgebäude hat im Gegensatz dazu manuell gesteuerte Versat-
tungseinrichtungen, jedoch nicht an allen Fenstern der relevanten Ausrichtungen.
Durch die geringe Belegung des Gebäudes mit nur zwei Bewohnern ist gleichzeitig die
Lüftungsrate im Vergleich zur Simulation geringer. Insgesamt werden dadurch die pas-
siven Energiegewinne unterschätzt, während die Energieverluste durch Fensterlüftung
überschätzt werden. Sowohl im Testgebäude als auch im Simulationsmodell schaltet
die BTA jedoch die Versorgung ab 24 °C Raumtemperatur ab. Wenn das effektiv nutz-
bare Temperaturband zwischen Raum- und Abschaltemperatur durch höhere passive
Solargewinne und geringere Luftwechsel verkleinert wird, sinkt auch das Potential für
durch die BTA gelieferte aktive Solarwärme für die Gebäudebeheizung. In Summe
kann dies die geringere Energiespeicherung durch die BTA erklären.

Die Simulationsergebnisse im rechten Diagramm der Abbildung 4 sind unter Berück-
sichtigung der höheren Speicherverluste errechnet worden. Es ist zu erkennen, dass
die mittlere Abweichung zwischen simulierter und gemessener Solarenergiedelieferung
an den Speicher zwischen Mai und August von 45 % auf etwa 10 % zurückgegangen
ist. Die aus den Messungen errechneten Bewertungsgrößen der Tabelle 3 sind in Ta-
Belle 4 erneut den Simulationen mit den geänderten Speicherkapazitätsparametern (Er-
gänzung um die Wärmeverluste der Frischwasserstation) gegenübergestellt.

| Tabelle 4: Jahreswerte des neuen Sonnenhauskonzepts aus Messung 2015/16 und Simulation 1994 für den Standort Hannover im Vergleich, jetzt mit angepassten Speicherwärmeverlusten |
|---------------------------------|----------------|------------------|
| Solarertrag gesamt | Messung 2015/16 | Simulation 1994 | Differenz |
| An BTA EG | 1949 kWh (23 %) | 2610 kWh (29 %) | +34 % |
| An BTA OG | 2150 kWh (25 %) | 2503 kWh (28 %) | +16 % |
| An Speicher | 2844 kWh (33 %) | 2402 kWh (27 %) | -16 % |
| An EWK | 1295 kWh (15 %) | 920 kWh (10 %) | -29 % |
| Solare Deckung | 52 % | 55 % | +6 % |
| Energie WP→Speicher | 6438 kWh | 6260 kWh | -3 % |
| Strombedarf gesamt | 2173 kWh | 1974 kWh | -9 % |
| JAZ | 3,45 | 3,66 | +6 % |

Beim Vergleich von Tabelle 3 und Tabelle 4 wird ein leicht erhöhter Solarertrag sicht-
bar. Auch die Energieverteilung auf Speicher und BTA hat sich verändert. Die verän-
derten Parameter führen zu 6 % geringerem Ertrag in die BTA in der Simulation, wäh-
rend der Speicher 9 % mehr Wärme bekommt. Durch die höheren Speicherverluste
steigt nun auch die Wärmelieferung der WP an den Speicher um mehr als 250 kWh.
Kombiniert mit einem leichten Rückgang der JAZ steigt der Gesamtstrombedarf um
100 kWh. Die solare Deckung steigt leicht an, da der Solarertrag stärker steigt als der
Strombedarf der Wärmepumpe.

Vergleichen mit den Messungen kann festgehalten werden, dass die Verteilung der
Solarenergie nun besser passt. Mit leicht erhöhtem Solarertrag insgesamt nähern sich
die Leistungsfähigkeit der WP, ihre Wärmelieferung an den Speicher und der Gesamt-
strombedarf stärker den Messergebnissen an. Auch wenn die Anteile der Solarenergiedienstlieferung nicht perfekt passen, kann die wesentliche Charakteristik doch wiedergegeben werden. Die verbleibenden Abweichungen sind den unterschiedlichen Lüftungs- und Verschattungssituationen zuzuschreiben, die in weiteren Simulationen angepasst werden müssen.

4.3 Stresstests

Zur Erhöhung der Raumtemperaturen sind die Bewohner angehalten worden, die Thermostatventile der Heizkörper entsprechend einzustellen. Die weiteren Parameter der Raumheizung sind nicht geändert worden, sodass die Abschalttemperatur der BTA weiterhin 24 °C beträgt. Die resultierenden mittleren täglichen Raumtemperaturen im KG, EG und OG sind im rechten Diagramm der Abbildung 5 dargestellt.

Das Verhältnis der Raumtemperaturen zueinander bleibt etwa dasselbe wie vor dem Stresstest. Wegen der höheren Raumtemperatur im Heizungsraum, der sich im KG befindet, ist diese Etage die wärmste, direkt gefolgt vom EG. Da nur einige der Räume im OG geheizt werden hat es die geringste Temperatur. Die Raumtemperatur, über alle Sensoren gemittelt, erhöht sich um knapp 2,5 °C auf 22 °C. Ein Vergleich mit einer Simulationsstudie unter gleichen Randbedingungen zeigt, dass dies für das Testgebäude einen Anstieg des Heizwärmebedarfs um 36 % nach sich zieht.

Das Diagramm auf der rechten Seite der Abbildung 5 zeigt die Temperatur des Erdreichs (T_{erde,m}), gemessen mittig zwischen den Rohren des EWK, das Minimum der EWK Ein- und Austrittstemperaturen (T_{EWK,in,min} und T_{EWK,aus,min}) und die Umgebungs temperatur (T_u) während der Stresstests. Der Beginn der Stresstestperiode ist durch die prompte Abnahme der Ein- und Austrittstemperaturen um knapp 2 K deutlich erkennbar. Beide Temperaturen bleiben für die gesamte Dauer des Tests unter null. Während die mittlere Laufzeit der WP mit etwa 20 Minuten gleich bleibt, nimmt die Taktzahl zu. Die Reduzierung der EWK Fläche ist durch Abschaltung von zwei der vier parallelen Erdreichkreise erfolgt. Dies führt zu einem größeren Durchfluss durch die verbleibenden Parallelkreise und in Kombination mit der ebenfalls kleiner gewordenen Wärmetauscherfläche zu einer Abnahme der mittleren Fluidtemperatur. Bemerkenswert ist, dass die mittlere Erdreichstemperatur, gemessen zwischen den Rohrschlangen (Abstand ca. 25 cm) keine sichtbare Beeinflussung durch den Temperaturabfall zeigt.
Seine Temperatur folgt im Wesentlichen der Umgebungstemperatur mit einigen Tagen Versatz.

Abbildung 5: Raum- und EKW Temperaturen während des Stresstests, Testperiode in beiden Diagrammen durch Schraffierung markiert
Raumtemperaturen während des Stresstests (links): durch BTA und Radiatoren an den Raum abgegebene Wärme, Raumtemperaturen im KG (Tr,KG), EG (Tr,EG), OG (Tr,OG) und mittlere Raumtemperatur (Tr,m)
Erdreichtemperaturen während des Stresstests (rechts): Wärmelieferung vom EWK an die WP (EWK→WP), mittlere Erdreichtemperatur (Terde,m), Umgebungstemperatur (Tu), minimale Ein-(T_EWK,in,min) und Austrittstemperatur (T_EWK,aus,min)

Schlussendlich ist die Erdreichtemperatur am Ende des Stresstests auf fast exakt dem gleichen Temperaturniveau wie zu Beginn. Ursache hierfür ist die im Mittel steigende Außentemperatur Anfang März. Die graue Fläche im Hintergrund zeigt die langsam abnehmende Energiemenge, die dem Erdreich entnommen wird. Die blaue Fläche zeigt die schon erhebliche Heizwärmemenge, die bereits durch die solarthermische BTA gedeckt werden kann. Das System begegnet den hohen Belastungen ungeachtet der nochmals deutlich reduzierten EWK Fläche souverän. Gleichermassen sei darauf hingewiesen, dass der Test zu sehr später Zeit am Ende der Heizsaison durchgeführt worden ist, sodass die Heizlast nicht ausreichte um Erdreich und WP tatsächlich an ihre Grenzen zu bringen. Trotzdem konnte der Test zeigen, dass das Systemkonzept trotz schon vorab unterdimensioniertem EWK nennenswerte Leistungsreserven hält, was sich auch mit Erkenntnissen aus den Systemsimulationen deckt.

5. Schlussfolgerungen und Ausblick
Die Mess- und Simulationsergebnisse aus dem ersten Betriebsjahr zeigen, dass das neue Sonnenhauskonzept bereits jetzt mit zufriedenstellender Leistung arbeitet, obgleich einige Probleme und Fehlfunktionen zu lösen waren, die die Systemleistung geschrägt haben. Die aus den Messdaten errechnete solare Deckung ist bereits im Erwartungsbereich. Mit einem verbleibenden Gesamtstrombedarf von 8 kWh/m²a ist der Endenergiebedarf bereits sehr gering. Der Vergleich zu Systemsimulationen zeigt

Der Stresstest am Ende der Heizsaison war nicht intensiv genug um die WP bzw. den EWK an die Belastungsgrenzen zu bringen. Deshalb scheint die aktuelle Systemkonfiguration für Wintermonate mit höherem Energiebedarf gerüstet zu sein. Über eine weitere Reduktion der EWK Fläche kann zudem nachgedacht werden.

6. Danksagung

7. Referenzen

Glembin 2013 Glembin et al., Solar Active Building with Directly Heated Concrete Floor Slabs, SHC 2013, International Conference on Solar Heating
and Cooling for Buildings and Industry, September 23rd-25th 2013, Freiburg, Germany

Ein neuartiges Sonnenhauskonzept wird unter realen Betriebsbedingungen messtechnisch geprüft. Während konventionelle Sonnenhäuser auf die Kombination von großem Wärmespeicher (5-10 m³ im Einfamilienhaus) und großem solarthermischem Kollektorfeld (30-40 m²) setzen, verwendete die neue Konzeption die Idee der direkten Solarheizung, die erstmals in den 1990ern in Frankreich erforscht wurde. Es kombiniert ein kleines Pufferspeichervolumen (ca. 1 m³) mit der zusätzlichen Erschließung der im Gebäude ohnehin verfügbaren Speichermassen über eine direkt solarthermisches gespeiste Bauteilaktivierung (BTA). Diese kann im Winter und in den Übergangszeiten die konventionelle Raumwärmeversorgung unterstützen oder gar ersetzen und ist dadurch eine wichtige Niedertemperatursenke für den Solarkollektor. Es können auch mit diesem System solare Deckungen von 50 % und mehr erreicht werden.

Die Auslegung und Abstimmung der Systemkomponenten sind durch umfangreiche dynamische Systemsimulationen erfolgt. Ein neuer Regelungsansatz für Solaranlagen, die mehrere unterschiedliche Speicher bei höchstmöglicher Endenergieeinsparung versorgen, wurde entwickelt und erfolgreich implementiert.

Das so optimierte Konzept ist in Form eines Testgebäudes praktisch realisiert und mit umfangreicher Messtechnik ausgestattet worden. Letztere dient zur Auswertung der Betriebseigenschaften und Leistungsfähigkeit während mehrerer Messjahre.

Messungen und Simulationen stimmen hinsichtlich des solaren Gesamtertrags von 275 kWh/m²a gut überein. Etwa die Hälfte des Solarertrags wird direkt an die solarthermische BTA übertragen, mit der diese 43 % des Raumwärmebedarfs decken kann. Durch eine JAZ der WP von 3,45 liegt der Strombedarf für die vollständige Wärmeversorgung bei nur 8 kWh/m²a. Eine aktive Begrenzung der Wärmeeinträge durch die Betriebsparameter der BTA ermöglicht die Reduzierung der sommerlichen Überhitzungstunden gegenüber Standard-Sonnennahkonzepten mit großem Speicher und eine gezielte Anpassung des gewünschten Raumkomforts an die Nutzerwünsche.

Jan Steinweg,
Institut für Solarenergieforschung Hameln
Am Ohrberg 1, 31860 Emmerthal
Tel.: +49 5151 999 647
E-Mail: steinweg@isfh.de
Web: www.isfh.de
Weniger ist manchmal mehr - Sonnenhäuser mit Bauteilaktivierung statt großem Speicher

Jan Steinweg

1 Institut für Solarenergieforschung, Am Ohrberg 1, 31860 Emmerthal
Tel.: +49(0)5151/999-647; Fax: +49(0)5151/999-500; Email: steinweg@isfh.de

Kurzfassung

Schlüsselwörter
Sonnenhaus, Bauteilaktivierung, Systemkosten, Gebäude als Wärmespeicher, Messergebnisse, Systemsimulationen

Einleitung

Aktuelle Sonnenhauskonzepte kombinieren große Kollektorflächen (30…40 m²) und Pufferspeicher (bis zu 10 m³ und mehr im Einfamilienhaus) mit Holzfeuerung als Nachheizung. So erreichen sie sowohl hohe solare Deckungen (>50 %) als auch einen geringen Primärenergiebedarf (<15 kWh/m²a). Das in diesem Beitrag beschriebene neue Konzept hat gleiche Ansprüche an die Energieeffizienz, bei deutlich reduziertem Speichervolumen von etwa 1 m³. Dadurch kann der Speicher komplett im Heizungsraum untergebracht werden, was das Konzept auch für die energetische Sanierung von Bestandsgebäuden attraktiv macht. Dieser Ansatz spart nicht nur kostenintensives Speichervolumen und umbauten Raum im Gebäude sondern ermöglicht auch eine deutlich bessere Zugänglichkeit der Systemkomponenten für Wartungs- und Instandsetzungsarbeiten.

Systemkonzept und Testgebäude

Abbildung 1: Schematische Darstellung des neuen Wärmeversorgungskonzepts (die Linien symbolisieren Energieflüsse)

Tabelle 1: Allgemeine Parameter der wesentlichen Systemkomponenten des Testgebäudes

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarthermischer Kollektor</td>
<td>Dachintegriert, 45° geneigt und nach Süden ausgerichtet, 30 m² Aperturfläche</td>
</tr>
<tr>
<td>Wärmepumpe</td>
<td>Sole-Wasser WP, 8 kW thermische Leistung bei 2 kW Kompressorleistung</td>
</tr>
<tr>
<td>Horiz. Erdwärmekollektor</td>
<td>170 m² Fläche in vier Kreisen (ohne Erschließungsleitungen), PE-Rohr mit 0,5 m Verlegeabstand</td>
</tr>
<tr>
<td>Solarthermische Bauteilaktivierung</td>
<td>Ca. 160 m PEX-Rohr je Etage mit 0,5 m Verlegeabstand, bifilare Verlegung, direkt an den Glykolkreis des Solarkollektors angeschlossen</td>
</tr>
</tbody>
</table>

Messkonzept

Insgesamt ermöglichen 65 Sensoren innerhalb und außerhalb des Gebäudes eine detaillierte Erfassung der Umgebungsbedingungen und Betriebszustände sowie der Leistungsfähigkeit des Konzepts. Die aufgenommenen Daten werden dabei zuerst verwendet, um die technische Funktionsfähigkeit des Systems und aller Komponenten zu ermitteln und ggf. Fehlfunktionen zu identifizieren. Des Weiteren werden anhand der Messdaten verschiedene Auswertegrößen berechnet, die Auskunft über die Leistungsfähigkeit des Systems geben. Dazu gehören der Solarertrag Q_{solar}, die solare Deckung f_{solar}, der Endenergiebedarf Q_{EE} und die Jahresarbeitszahl der WP JAZ_{WP}. Die Berechnungen sind wie folgt definiert:

$$ Q_{solar} = Q_{St} + Q_{BTA,EG} + Q_{BTA,OG} + Q_{EWX} $$

$$ f_{solar} = \frac{Q_{St} + Q_{BTA,EG} + Q_{BTA,OG}}{Q_{St} + Q_{BTA,EG} + Q_{BTA,OG} + Q_{WP,St}} $$
\[Q_{EE} = W_{el,WP,Kon} + W_{el,WP,Aux} + W_{el,b} + W_{el,R} \]
(3)

\[J_{AZ_{WP}} = \frac{Q_{WP,St}}{W_{el,WP,Kon} + W_{el,WP,Aux}} \]
(4)

\[Q_{sol} \]
Solarertrag des Kollektors in kWh

\[Q_{St} \]
An Speicher gelieferte Solarenergie in kWh

\[Q_{TABS,EG} \]
An BTA (EG/OG) gelieferte Solarenergie in kWh

\[Q_{EWK} \]
An EWK gelieferte Solarenergie in kWh

\[Q_{WP,St} \]
Von WP an den Speicher gelieferte Energie in kWh

\[W_{el,WP,Kon} \]
Elektrische Energieaufnahme des WP Kompressors in kWh

\[W_{el,WP,Aux} \]
Elektrische Energieaufnahme des WP Heizstabs in kWh

\[W_{el,P} \]
Elektrische Energieaufnahme der Pumpen in kWh

\[W_{el,R} \]
Elektrische Energieaufnahme des Systemreglers, inkl. aller Ventile, in kWh

Abbildung 3: Hydraulikskizze des Systemkonzepts im Testgebäude mit den wesentlichen Komponenten für die Energiebilanzierung

Wärmequellen
- Solarkollektor
- Wärmepumpe

Speicher bzw. -senken
- BTA (EG & OG)
- Pufferspeicher
- EWK

Wärmesenken
- Raumheizung
- Trinkwarmwasser
Ergebnisse der Messungen

Im Betrieb sind für zwei Messjahre (April 2015 bis März 2016 und April 2016 bis März 2017) Daten aufgenommen worden. Während im ersten Messjahr noch die Einrege-

lung einiger Systemteile sowie einige Versuche vorgenommen wurden, konnte die An-

lage im zweiten Messjahr weitestgehend unangetastet arbeiten. Die Bewohner haben keine Anweisungen für ihr Nutzerverhalten bekommen. Nachfolgende Tabelle 2 zeigt den Vergleich der zwei vorliegenden Messjahre 2015/16 und 2016/17 sowie die Jah-

resmitteltemperatur und Einstrahlung zur Beurteilung der meteorologischen Randbe-

dingungen.

<table>
<thead>
<tr>
<th>Messung 2015/16</th>
<th>Messung 2016/17</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahressmitteltemperatur</td>
<td>10,3 °C</td>
<td>10,6 °C</td>
</tr>
<tr>
<td>Einstrahlung (45°)</td>
<td>1146 kWh/m²</td>
<td>1195 kWh/m²</td>
</tr>
<tr>
<td>Gradtagzahl</td>
<td>3382</td>
<td>3263</td>
</tr>
<tr>
<td>Solarertrag gesamt (spezifisch)</td>
<td>8525 kWh</td>
<td>8971 kWh</td>
</tr>
<tr>
<td>In BTA EG</td>
<td>1949 kWh (23 %)</td>
<td>1379 kWh (15 %)</td>
</tr>
<tr>
<td>In BTA OG</td>
<td>2150 kWh (25 %)</td>
<td>1800 kWh (20 %)</td>
</tr>
<tr>
<td>In Speicher</td>
<td>2844 kWh (33 %)</td>
<td>3258 kWh (36 %)</td>
</tr>
<tr>
<td>In GHX</td>
<td>1295 kWh (15 %)</td>
<td>2188 kWh (24 %)</td>
</tr>
<tr>
<td>Solare Deckung</td>
<td>52 %</td>
<td>47 %</td>
</tr>
<tr>
<td>Wärme WP → Speicher</td>
<td>6438 kWh</td>
<td>7149 kWh</td>
</tr>
<tr>
<td>Strombedarf gesamt</td>
<td>2173 kWh</td>
<td>2380 kWh</td>
</tr>
<tr>
<td>JAZ WP</td>
<td>3,45</td>
<td>3,40</td>
</tr>
<tr>
<td>Nutzwärme RH (Rad)</td>
<td>5369 kWh</td>
<td>6394 kWh</td>
</tr>
<tr>
<td>Nutzwärme TWW</td>
<td>994 kWh</td>
<td>885 kWh</td>
</tr>
</tbody>
</table>

Zunächst zeigt der Vergleich der Jahressmitteltemperaturen und der Einstrahlungssum-

men auf die 45° geneigte Ebene, dass die zwei Messjahre im Jahresmittel etwa ver-

gleichbar warm und einstrahlungsreich sind. Bei detaillierterer monatlicher Betrach-

tung zeigt sich die zweite Messphase 2016/17 in den Wintermonaten November bis Februar deutlich strahlungsärmer und kälter als die erste Messphase 2015/16. Dies schlägt sich jedoch nicht in der Gradtagzahl nieder, u.a. da die Heizperiode durch den überdurchschnittlich warmen September deutlich verkürzt wurde.

Der Solarertrag ist im zweiten Messjahr 5 % höher als im ersten, der spezifische Kol-

lektorertrag steigt auf 288 kWh/m²a. Die Verteilung des Solarertrags auf die drei mög-

lichen Senken gestaltet sich recht unterschiedlich. Im ersten Messjahr wird etwa die Hälfte des gesamten Solarertrags an die BTA geliefert, im zweiten Messjahr ist es nur etwas über einem Drittel. Der Grund hierfür ist die geringere Einstrahlung in den späten Übergangs- und besonders in den Wintermonaten. Zusätzlich führt der extrem warme September dazu, dass hier abweichend zur ersten Messphase noch gar kein Wärme-

bedarf im Gebäude auftritt. Der Raumwärmbedarf konzentriert sich also stärker auf die Kernwintermonate, in denen die BTA durch die geringere Einstrahlung aber weni-

ger Leistung erbringen kann, als während der ersten Messphase.

Trotz des höheren solaren Gesamtertrags ist die solare Deckung mit 47 % geringer als im ersten Messjahr. Dies begründet sich vor allem durch die ebenfalls gestiegene Wärmelieferung der WP. Die hohe Wärmeabgabe an das Erdreich spielt ebenso eine Rolle, da sie zum Gesamtertrag gezählt, aber nicht in der solaren Deckung berücksichtigt wird (siehe Gleichung (2)).

Der Strombedarf der WP steigt etwa im selben Maße wie die gelieferte Wärmemenge, die JAZ verringert sich geringfügig. Durch den etwas kälteren Winter und die vermutlich gestiegene Wärmeverwertung der Nutzer steigt der Raumheizbedarf des Gebäudes um 20 % während der tendenziell ohnehin geringe Bedarf für Trinkwarmwasser nochmals um etwa 100 kWh fällt. Insgesamt kommt das System mit einem sehr geringen Gesamtstrombedarf von 7,4 kWh/m²a bis 8,1 kWh/m²a aus. Auch primärenergietisch kann dieses Konzept also mit Standard-Sonnenhauskonzepten konkurrieren (13,3 kWh/m²a bis 14,6 kWh/m²a).

Systemvereinfachungen

Abbildung 4: Systeme der Vergleichsstudie, links das Konzept des neuen Sonnenhauses, mittig das typische Kombisystem und rechts das Solar-Direkt-System, je-weils als stark vereinfachtes Schema

Abbildung 5 zeigt die Ergebnisse des Systemvergleichs. Die Diagramme zeigen die Endenergiebedarfe der drei Systeme jeweils mit Gaskessel (linkes Diagramm) und WP (rechtes Diagramm) unter Variation der Kollektorfläche.

Abbildung 5: Endenergiebedarfe für neues Sonnenhaus, herkömmliches Kombisystem und Solar-Direkt-Heizung mit Gastherme (links) und WP (rechts) als Nachheizwärmequelle

Bei den Systemen mit WP wird ein wesentlicher Anteil des Wärmebedarfs mit Umweltwärme aus dem Erdreich gedeckt, deshalb der grundsätzlich deutlich geringere Endenergiebedarf gegenüber den Systemen mit Gaskessel. Bei WP Systemen ist die Abhängigkeit der Nachheizeffizienz vom Betriebstemperaturniveau der Raumheizung viel

Systemkosten im Vergleich

Zu Beginn des Forschungsvorhabens ist das gemeinsame Ziel formuliert worden, die sonnenhausspezifischen Systemkosten des neuen Konzepts (SH2) gegenüber den klassischen Sonnenhauskonzepten (SH1) um mindestens 25 % zu reduzieren. Zur Ermittlung des Kostenvergleichs unterschiedlicher Systeme sind zwei voneinander unabhängige Planer damit beauftragt worden, das Testgebäude in Hannover fiktiv mit jeweils dem klassischen und dem neuen Sonnenhauskonzept auszustatten und die dafür entstehenden Systemkosten realistisch zu berechnen. Das klassische Sonnenhauskonzept entspricht dem des Musterhauskonzepts der Firma HELMA und ist mit einem großen, zentralen Wasserspeicher (ca. 7 m³) und einem 20 kW Holzofen ausgestattet. Das neue Systemkonzept entspricht der oben bereits beschriebenen Ausstattung des Testgebäudes. Die Systeme für den Kostenvergleich sind in Abbildung 6 bildlich dargestellt.

Abbildung 6: Sonnenhauskonzepte im Vergleich der Systemkosten, links das klassische (SH1), rechts das neue Sonnenhauskonzept (SH2)

Abbildung 7 zeigt die relativen Systemkosten der Sonnenhauskonzepte im Vergleich, bezogen auf die Kosten des klassischen Sonnenhaussystems. Das neue Sonnenhauskonzept ist sowohl entsprechend der Umsetzung im Testgebäude als auch in einer modifizierten Form kalkuliert worden. Die Optimierung sieht im Wesentlichen die
Zusammenlegung der rein solarthermischen Bauteilaktivierung und des konventionellen Radiatorheizsystems in einer gemeinsam genutzten Fußbodenheizung vor, wie es bereits im vorherigen Kapitel und in (Glembin 2016) beschrieben wird. Das optimierte System ist energetisch mindestens gleichwertig gegenüber dem System im Testgebäude.

Abbildung 7: Relative Systemkosten, bezogen auf das klassische Sonnenhauskonzept (SH1, links) im Vergleich zum neuen Sonnenhaus (SH2) entsprechend dem Testgebäude (Mitte) und mit optimierter Systemausführung (rechts, entspricht der „Solar-Direkt-Heizung“)

Fazit

Das theoretisch entwickelte Sonnenhauskonzept mit direkt solarthermischer Bauteilaktivierung statt großem Speicher kann auch in der Praxis seine Funktionsfähigkeit unter Beweis stellen. Der gemessene Endenergiebedarf liegt zwischen 7 kWh/m²a und
8 kWh/m²a. Unter Berücksichtigung des aktuellen Primärenergiefaktors für Strom ist das Konzept gleichauf mit der Effizienz konventioneller Sonnhauskonzepte, spart demgegenüber jedoch, abhängig vom Grad der Komplexität, zwischen 28 % und 35 % der sonnenhaustypischen Systemkosten ein.

Weiterhin bietet das System Potential für Vereinfachungen, die - bei gleicher oder sogar höherer energetischer Effizienz - dazu beitragen können, nicht nur Kosten sondern auch Berührungsängste und Hemmnisse bei der Markteinführung seitens Handwerkerkern und Planern zu reduzieren.

Danksagung

Referenzen

Glembin J., Büttner Ch., Steinweg J., et. al. (2013), Solar Active Building with Directly Heated Concrete Floor Slabs, SHC 2013, International Conference on Solar Heating and Cooling for Buildings and Industry, September 23rd-25th 2013, Freiburg, Germany

