

Solar-thermal activation of rear-ventilated facades as a source for heat pump based heat supply systems (Solar-VHF)

Ch. Büttner, E. Frick, F. Giovannetti

Institute for Solar Energy Research in Hamelin (ISFH), Germany

Contact: buettner@isfh.de

Solar-thermal activation of rear-ventilated facades as a source for heat pump based heat supply systems (Solar-VHF)

Ch. Büttner, E. Frick, F. Giovannetti

Institute for Solar Energy Research in Hamelin (ISFH), Germany

Contact: buettner@isfh.de

Solar-VHF: project goals

- Integration of solar thermal components in facades of multi-family houses
- Invisible integration in rear-ventilated facades
- Facade as heat pump source, direct loading of buffer storage or space heating
- Alternative supply concepts with small borehole heat exchanger or source storage tanks

3

ISFH

Facade cladding: construction

- Detailed investigation of manufacturing and properties
- Different facade claddings
 - Concrete
 - Metal
 - Glass (unglazed and double glazed)
- Goal:
 - Reduction / replacement of typical sources
 - Use of heat pump under otherwise unusable conditions

🗮 ISFH

Tests: laboratory and outdoor

- Laboratory tests on single façade modules
- Different facade claddings
 - Concrete
 - Metal
 - Glass (unglazed and double glazed)
- In-situ experimental tests on large-sized façade prototypes
- Analyze thermal efficiency and reliability

Tests: laboratory and outdoor

- İSFH
- Laboratory tests on single façade modules
- Different facade claddings
 - Concrete
 - Metal
 - Glass (unglazed and double glazed)
- In-situ experimental tests on large-sized façade prototypes
- Analyze thermal efficiency and reliability

Collector output

- Useful power extracted from collector
- Different facade claddings
 - Concrete
 - Metal
 - Glass (unglazed and double glazed)
- Flat plate collector for comparison

Heat yield: facade and collector

- Heat depending on inlet temperatur
- Different temperature ranges
- Facade: Icing / dew formation
- Heat pump: limits of evaporator side
- Glass, double glazed 🔹 🔍 Borehole heat exchanger: regeneration
 - Buffer storage: direct loading

Concrete

Flat plate, 45° Flat plate, 90°

- Metal

Heat Map: power during day and year

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

- Different facade claddings for different temperature range
- Orientation determines time of maximum power
 - East: morning
 - South: noon
 - West: evening

28.09.2022

• BHE -> HP: borehole heat exchanger (BHE) as source of heat pump

Leibniz

Universität

Hannover

- **BHE -> HP:** borehole heat exchanger (BHE) as source of heat pump
- **SOL -> BHE:** solar façade (SOL) for active regeneration of BHE

- BHE -> HP: borehole heat exchanger (BHE) as source of heat pump
- **SOL -> BHE:** solar façade (SOL) for active regeneration of BHE
- BHE + SOL -> HP: Outlet of BHE additionally heated by SOL as source of heat pump (HP)

Leibniz

Universität

Hannover

- BHE -> HP: borehole heat exchanger (BHE) as source of heat pump
- **SOL -> BHE:** solar façade (SOL) for active regeneration of BHE
- **BHE + SOL -> HP:** Outlet of BHE additionally heated by SOL as source of heat pump (HP)
- SOL -> HP: SOL as source of HP

Leibniz

Universität

Hannover

- BHE -> HP: borehole heat exchanger (BHE) as source of heat pump
- SOL -> BHE: solar façade (SOL) for active regeneration of BHE
- BHE + SOL -> HP: Outlet of BHE additionally heated by SOL as source of heat pump (HP)
- SOL -> HP: SOL as source of HP
- -> HP: power consumption of HP compressor

Results: Orientation for concrete

- Heat demand: SH 52 MWh (38 kWh/(m²a)), DHW 20 MWh
- Activation of large continuous south facade often not possible
- East and west facade also suitable
- 75 m² concrete facade: ~1/3 of heat extraction regenerated of borehole heat exchanger

HP

Conclusion

- Building envelope as an unused energy source
- Different claddings for different temperature range
- Invisible installation in rear-ventilated facade
- Orientation influences heat generation during day
- Significant contribution to renewable energy in building sector

- Enables use of heat pump for refurbishment and new-build
- Additional source enables otherwise unsuitable projects
- Small concrete façade enables reduction of BHE by 25%
- Currently under construction; ready for occupancy spring 2023

Acknowledgments

This work was funded by the state of Lower Saxony and the Federal Ministry for Economic Affairs and Climate Action (BMWK) under grant number 03ETW013 (Solar-VHF).

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

