1.
R Gogolin; D Zielke; W Lövenich; R Sauer; J Schmidt
In: Energy Procedia, Bd. 92, S. 638-643, 2016, ISSN: 1876-6102, (Proceedings of the 6th International Conference on Crystalline Silicon Photovoltaics (SiliconPV 2016)).
@article{Gogolin2016b,
title = {Silicon Heterojunction Solar Cells Combining an a-Si:H (n) Electron-collector with a PEDOT:PSS Hole-collector},
author = {R Gogolin and D Zielke and W Lövenich and R Sauer and J Schmidt},
doi = {10.1016/j.egypro.2016.07.030},
issn = {1876-6102},
year = {2016},
date = {2016-08-01},
journal = {Energy Procedia},
volume = {92},
pages = {638-643},
abstract = {We combine PEDOT:PSS as hole-selective layer on c-Si with a well-passivating electron-selective a-Si:H(n) layer in an alternative type of silicon heterojunction solar cell. As the interface between the PEDOT:PSS and the c-Si substrate plays a crucial role in the cell performance, we examine the impact of an interfacial SiOx tunneling layer between the c-Si substrate and the PEDOT:PSS in detail. We find that a natural SiOx layer grown within a couple of minutes leads to low J0 values ranging between (80 - 130) fA/cm2, allowing for Voc values of ∼690 mV. Implementation of this PEDOT:PSS/SiOx/c-Si junctions into solar cells with phosphorus-diffused n+ front results in low series resistance values of only 0.6 Ωcm2 and good fill factors >80% leading to efficiencies >20%. We then implement the PEDOT:PSS/SiOx/c-Si junction to the back of heterojunction cells with an a-Si:H(n)/ITO front, in order to demonstrate the feasibility of this novel cell concept, which has a higher Voc potential compared to cells with a conventionally processed front side. The cell efficiencies of the first batch reach 15.2%. This relatively moderate efficiency of the first cell batch is due to technological issues with the screen-printed front metallization grid, leading to poor fill factors of only 71%, whereas the Voc values of this first batch were already above 650 mV.},
note = {Proceedings of the 6th International Conference on Crystalline Silicon Photovoltaics (SiliconPV 2016)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
We combine PEDOT:PSS as hole-selective layer on c-Si with a well-passivating electron-selective a-Si:H(n) layer in an alternative type of silicon heterojunction solar cell. As the interface between the PEDOT:PSS and the c-Si substrate plays a crucial role in the cell performance, we examine the impact of an interfacial SiOx tunneling layer between the c-Si substrate and the PEDOT:PSS in detail. We find that a natural SiOx layer grown within a couple of minutes leads to low J0 values ranging between (80 - 130) fA/cm2, allowing for Voc values of ∼690 mV. Implementation of this PEDOT:PSS/SiOx/c-Si junctions into solar cells with phosphorus-diffused n+ front results in low series resistance values of only 0.6 Ωcm2 and good fill factors >80% leading to efficiencies >20%. We then implement the PEDOT:PSS/SiOx/c-Si junction to the back of heterojunction cells with an a-Si:H(n)/ITO front, in order to demonstrate the feasibility of this novel cell concept, which has a higher Voc potential compared to cells with a conventionally processed front side. The cell efficiencies of the first batch reach 15.2%. This relatively moderate efficiency of the first cell batch is due to technological issues with the screen-printed front metallization grid, leading to poor fill factors of only 71%, whereas the Voc values of this first batch were already above 650 mV.