Software

Contact TRNSYS Types
Susanne Schiewe
Tel.: +49(0)5151-999 502
E-Mail: s.schiewe@isfh.de
Contact Daidalos
Dr. Carsten Schinke
Tel.: +49(0)5151-999 632
Tel. (Leibniz Universität Hannover): +49(0)511-762 5505
E-Mail: c.schinke@isfh.de
On this page we offer you software developed at ISFH for download.
DIADALOS (free of charge according to license agreement)

Daidalos is a ray tracing framework developed for the purpose of simulating the optical properties of photovoltaic (PV) modules in their environment. It enables many different applications across seven orders of magnitude in size from ray tracing of building facades to ray tracing of solar cell texture elements. Daidalos-Cloud is the online version of Daidalos. Using the Daidalos-Cloud web interface, you can adjust the PV module simulation properties via 79 parameters and download the results for your own use.

More info on Daidalos-Cloud
Try Daidalos-Cloud yourself today

TRNSYS Types (free of charge according to license agreement)

ISFH components for thermal system simulation with TRNSYS

ISFH has developed a series of components for the representation of thermal and electrical system technology for the simulation environment TRNSYS. We provide a selection of the generated types free of charge.

How do I get such a type? Please download the respective license agreement and fax it filled out with your e-mail address to 05151-999-500 or send it to s.schiewe@isfh.de. We will then email you the type.

 

SEGA GUI (free of charge according to license agreement)

In the research of industrial silicon solar cells the gap to the theoretical efficiency limit of about 29% closes gradually. State-of-the-art industrial PERC cells achieve efficiencies around 22% leaving only 7% efficiency improvement potential.

Closing this gap further is a challenging task for cell developers. The identification of the most promising cell properties for the further research is an important aspect of the development process. The SEGA-GUI, which can be downloaded below, addresses this task by enabling researchers to perform synergistic efficiency gain analyses (SEGA) without any programming knowledge and on short timescales. Here the solar cell is simulated one time with the parameter as in a reference simulation and one time with the parameter idealized.

The difference of the energy conversion efficiencies is the improvement potential due to this parameter. This approach also enables the analysis of synergistic effects between different loss channels. Also partly deactivated loss channels can be analyzed. The input required for performing a SEGA is a set of easily measurable cell properties including resistances and recombination currents. The optical properties of the cell can be determined from a measured reflectance spectrum.

The tool can be downloaded free of charge from the following link
SEGA GUI

SpiceGUI (free of charge according to license agreement)

The SpiceGUI is a simulation tool for modeling solar cells with equivalent circuit diagrams. It was developed at ISFH by Stefan Eidelloth. The source code is freely available, there is no further development of the software by ISFH. We would like to have contact to the users of our software and a voluntary registration unfortunately did not work. Therefore the installation files are protected with a password. To receive the password please send a short e-mail with the subject “Password”, your name & organisation to software@isfh.de.

Please install LTspice and Octave3.6.2 (or Matlab) before installing SpiceGUI. The Octave-Forge packages must be installed during the Octave installation. Installation instructions can be found in the help file. The software is no longer supported. The GUI works with the versions “Windows XP, Service Pack 3”, “LTSpice4.23h” and “Octave3.6.2”. 

Documentation SpiceGUI Dokumentation
Windows – Installer SpiceGUI Download
Literature Simulation tool for equivalent circuit modeling of photovoltaic devices, S. Eidelloth, F. Haase, R. Brendel, Photovoltaics, IEEE Journal of , vol.PP, no.99, doi: 10.1109/JPHOTOV.2012.2187774

CoBoGUI (free of charge according to license agreement)

CoBoGUI (Conductive-Boundary-model Graphical User Interface) is a collection of MATLAB functions for the two-dimensional simulation of solar cells based on COMSOL Multiphysics. CoBoGUI was developed at ISFH by Stefan Eidelloth and Ulrich Eitner.

The source code is freely available. We would like to have contact to the users of our software and a voluntary registration unfortunately did not work. Therefore we have provided the installation files with a password. To receive the password please send a short e-mail with the subject “Password”, your name & organization to software@isfh.de.

The software is no longer supported. The GUI works with the versions “Windows XP, Service Pack 3”, “MATLAB R2010a”, “Comsol 3.5a”, “Comsol 4.1, alpha” and “Comsol 4.2a, alpha.